
Preferences and Ethical Principles in Decision Making

Andrea Loreggia
University of Padova

andrea.loreggia@gmail.com

Nicholas Mattei
IBM Research

n.mattei@ibm.com

Francesca Rossi
IBM Research

University of Padova
francesca.rossi2@ibm.com

K. Brent Venable
Tulane University

kvenabl@tulane.edu

Abstract

If we want AI systems to make decisions, or to support hu-
mans in making them, we need to make sure they are aware
of the ethical principles that are involved in such decisions, so
they can guide towards decisions that are conform to the eth-
ical principles. Complex decisions that we make on a daily
basis are based on our own subjective preferences over the
possible options. In this respect, the CP-net formalism is a
convenient and expressive way to model preferences over de-
cisions with multiple features. However, often the subjective
preferences of the decision makers may need to be checked
against exogenous priorities such as those provided by eth-
ical principles, feasibility constraints, or safety regulations.
Hence, it is essential to have principled ways to evaluate if
preferences are compatible with such priorities. To do this,
we describe also such priorities via CP-nets and we define a
notion of distance between the ordering induced by two CP-
nets. We also provide tractable approximation algorithms for
computing the distance and we define a procedure that uses
the distance to check if the preferences are close enough to
the ethical principles. We then provide an experimental eval-
uation showing that the quality of the decision with respect
to the subjective preferences does not significantly degrade
when conforming to the ethical principles.

Introduction
If we want people to trust AI systems, we need to provide
them with the ability to discriminate between good and bad
decisions. The quality of a decision should not be based only
on the preferences or optimisation criteria of the decision
makers, but also on other properties related to the impact of
the decision, such as whether it is ethical, or if it complies to
constraints and priorities given by feasibility constraints or
safety regulations.

A lot of work has been done to understand how to model
and reason with subjective preferences. This is understand-
able, since preferences are ubiquitous in everyday life. We
use our own subjective preferences whenever we want to
make a decision to choose our most preferred alternative.
Therefore the study of preferences in computer science and
AI has been very active for a number of years with impor-
tant theoretical and practical results (Domshlak et al. 2011;
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Pigozzi et al. 2015) as well as libraries and datasets (Mattei
and Walsh 2013).

Our preferences may apply to one or more of the individ-
ual components, rather than to an entire decision. For exam-
ple, if we need to choose a car, we may prefer certain colours
over others, and we may prefer certain brands over others.
We may also have conditional preferences, such as in prefer-
ring red cars if the car is a convertible. For these scenarios,
the CP-net formalism (Boutilier et al. 2004) is a convenient
and expressive way to model preferences (Rossi et al. 2011;
Chevaleyre et al. 2008; Goldsmith et al. 2008; Cornelio et
al. 2013) CP-nets indeed provide an effective compact way
to qualitatively model preferences over outcomes (that is,
decisions) with a combinatorial structure. CP-nets are also
easy to elicit and provide efficient optimization reasoning
(Chevaleyre et al. 2011; Allen et al. 2015). Moreover, in a
collective decision making scenario, several CP-nets can be
aggregated, e.g., using voting rules (Conitzer et al. 2011;
Mattei et al. 2013; Cornelio et al. 2015), to find compro-
mises and reach consensus among decision makers.

If ethical constraints are added to this scenario, it means
that the subjective preferences of the decision makers is
not the only source of information we should consider (Sen
1974; Thomson 1985; Bonnefon et al. 2016). Indeed, de-
pending on the context, we may have to consider specific
ethical principles derived from an appropriate ethical the-
ory (Copp 2005). While preferences are important, when
preferences and ethical principles are in conflict, the prin-
ciples should override the subjective preferences of the de-
cision maker. For example, in a hiring scenario, the prefer-
ences of the hiring committee members over the candidates
should be measured against ethical guidelines and laws e.g.,
ensuring gender and minority diversity. Therefore, it is es-
sential to have principled ways to evaluate if preferences are
compatible with a set of ethical principles, and to measure
how much these preferences deviate from the ethical princi-
ples. The ability to precisely quantify the distance between
subjective preferences and external priorities, such as those
given by ethical principles, provides a way to both recognize
deviations from feasibility or ethical constraints, and also to
suggest more compliant decisions.

In this paper we use CP-nets to model both exogenous pri-
orities, e.g., those provided by ethical principles, and subjec-
tive preferences of decision makers. Thus the distance be-



tween an individual subjective preferences and some ethi-
cal principles can be measured via a notion of distance be-
tween CP-nets. Indeed, we define such a notion of distance
(formally a distance function or metric) between CP-nets.
A more comprehensive discussion of CP-nets and distances
between them is given by Loreggia et al. (2018).

Since CP-nets are a compact representation of a partial or-
der over the possible decisions, the ideal notion of distance
is a distance between the induced partial orders of the CP-
nets. However, the size of the induced orders is exponential
in the size of the CP-net, and we conjecture that comput-
ing a distance between such partial orders is computation-
ally intractable because of this possibly exponential explo-
sion. Therefore we propose a tractable approximation that is
computed directly over the CP-nets dependency graphs, and
we study the quality of the approximation.

To define the desired distance between partial orders, we
generalize the classic (Kendall 1938) τ (KT) distance, which
counts the number of inverted pairs between two complete,
strict linear orders. We add a penalty parameter p defined for
partial rankings as proposed by (Fagin et al. 2006), and use
this distance, that we call KTD, to compare partial orders. In
KTD the contribution of pairs of outcomes that are ordered
in opposite ways is 1 and that of those that are ordered in one
partial order and incomparable in the other is p. We show
that 0.5 ≤ p < 1 is required for KTD to be a distance.

For the tractable approximation of KTD, we can define
a distance between CP-nets, called CPD, that only analyzes
the dependency structure of the CP-nets and their CP-tables.
We then characterize the case when CPD = 0, which cor-
respond to when the two CP-nets have the same dependency
structure and CP-tables. In other words, CPD = 0 if and
only if the two CP-nets are identical and they induce the
same partial order over outcomes.

In general the values returned by CPD and KPD can be
different. More precisely, the pairs of outcomes for which
CPD could give an incorrect contribution to the distance are
those that are either incomparable in both CP-nets (in this
case CPD could generate an error of +p or −p), or that are
incomparable in a CP-net and ordered in the other (in this
case the CPD error can be +1). To give upper and lower
bounds to the error that CPD can make, we study the number
of incomparable pairs present in a CP-net. We show that it
is polynomial to compute the number of incomparable pairs
of outcomes in a separable CP-net (that is, CP-nets with no
dependencies among features). Non-separable CP-nets have
fewer incomparable pairs of outcomes, since each depen-
dency link eliminates at least one incomparable pair.

Our theoretical bounds are fairly wide. For this reason,
we perform an experimental analysis of the relationship be-
tween CPD and KTD, which shows that the average error
is never more than 10%. We then define a procedure that
evaluates the distance between subjective preferences and
ethical principles, and makes decisions using the subjective
preferences if they are close enough to the ethical principles.
Otherwise, the procedure moves to less preferred decisions
until we find one that is a compromise between the ethical
principles and the preferences. We then perform an exper-
imental evaluation showing that the quality of the decision

with respect to the subjective preferences does not signifi-
cantly degrade, i.e., only needs to be moved a short distance
in the preference order, when we need compliance with the
ethical principles.

Background: CP-nets
CP-nets (Boutilier et al. 2004) (for Conditional Prefer-
ence networks) are a graphical model for compactly rep-
resenting conditional and qualitative preference relations.
They are sets of ceteris paribus preference statements (cp-
statements). For instance, the cp-statement “I prefer red
wine to white wine if meat is served.” asserts that, given
two meals that differ only in the kind of wine served and
both containing meat, the meal with red wine is prefer-
able to the meal with white wine. Formally, a CP-net has
a set of features F = {x1, . . . , xn} with finite domains
D(x1), . . . ,D(xn). For each feature xi, we are given a set
of parent features Pa(xi) that can affect the preferences
over the values of xi. This defines a dependency graph
in which each node xi has Pa(xi) as its immediate pre-
decessors. An acyclic CP-net is one in which the depen-
dency graph is acyclic. Given this structural information,
one needs to specify the preference over the values of each
variable x for each complete assignment on Pa(x). This
preference is assumed to take the form of a total or par-
tial order over D(x). A cp-statement has the general form
x1 = v1, . . . , xn = vn : x = a1 � . . . � x = am, where
Pa(x) = {x1, . . . , xn}, D(x) = {a1, . . . , am} , and � is
a total order over such a domain. The set of cp-statements
regarding a certain variable X is called the cp-table for X .

Consider a CP-net whose features are A, B, C, and D,
with binary domains containing f and f if F is the name of
the feature, and with the cp-statements as follows: a � a,
b � b, (a ∧ b) : c � c, (a ∧ b) : c � c, (a ∧ b) : c � c,
(a ∧ b) : c � c, c : d � d, c : d � d. Here, statement
a � a represents the unconditional preference for A = a
over A = a, while statement c : d � d states that D = d is
preferred to D = d, given that C = c.

A worsening flip is a change in the value of a variable to
a less preferred value according to the cp-statement for that
variable. For example, in the CP-net above, passing from
abcd to abcd is a worsening flip since c is better than c given
a and b. One outcome α is better than another outcome β
(written α � β) if and only if there is a chain of worsening
flips from α to β. This definition induces a preorder over the
outcomes, which is a partial order if the CP-net is acyclic.

Finding the optimal outcome of a CP-net is NP-
hard (Boutilier et al. 2004). However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in
linear time by sweeping through the CP-net, assigning the
most preferred values in the cp-tables. For instance, in the
CP-net above, we would choose A = a and B = b, then
C = c, and thenD = d. In the general case, the optimal out-
comes coincide with the solutions of a set of constraints ob-
tained replacing each cp-statement with a constraint (Braf-
man and Dimopoulos 2004): from the cp-statement x1 =
v1, . . . , xn = vn : x = a1 � . . . � x = am we get the
constraint v1, . . . , vn ⇒ a1. For example, the following cp-



statement (of the example above) (a ∧ b) : c � c would be
replaced by the constraint (a ∧ b)⇒ c.

In this paper we want to compare CP-nets while lever-
aging the compactness of the representation. To do this, we
consider profile (P,O), where P is a collection of n CP-
nets (whose graph is a directed acyclic graph (DAG)) over
m common variables with binary domains and O is a to-
tal order over these variables. We require that the profile is
O-legal (Lang and Xia 2009), which means that in each CP-
net, each variable is independent to all the others following
in the orderingO. Given a variableXi the function flw(Xi)
returns the number of variables following Xi in O.

Since every acyclic CP-net is satisfiable (Boutilier et al.
2004), we compute a distance among two CP-nets by com-
paring a linearization of the partial orders induced by the two
CP-nets. In this paper, we consider the linearization gener-
ated using the algorithm described in the proof of Theorem
1 of (Boutilier et al. 2004) and reproduced below as Algo-
rithm 1. This algorithm works as follows: Given an acyclic
CP-net A over n variables and a ordering O to which the
A is O-legal, we know there is at least one variable with
no parents. If more than one variable has no parents, then
we choose the one that comes first in the provided order-
ing O; let X be such a variable. Let x1 � x2 be the order-
ing over Dom(X) dictated by the cp-table of X . For each
xi ∈ Dom(X), construct a CP-net, Ni, with the n− 1 vari-
ables V −X by removing X from the initial CP-net, and for
each variable Y that is a child of X , revising its CPT by re-
stricting each row to X = xi. We can construct a preference
ordering �i for each of the reduced CP-nets Ni. For each
Ni recursively identify the variable Xi with no parents and
construct a CP-net for each value inDom(Xi) following the
same algorithm until a CP-net have variables. We can now
construct a preference ordering for the original network A
by ranking every outcome with X = xi as preferred to any
outcome with X = xj if xi � xj in CPT(X). This lineariza-
tion, which we denote with LexO(A), assures that ordered
pairs in the induced partial order are ordered the same in
the linearization and that incomparable pairs are linearized
using the cp-tables.

Algorithm 1 Linearization of a Partial Order induced by a
CP-net A

1: function LEXO(A,O,Lin = [], o = None) . Where
A is a CP-net, O is the O-legal order on A, Lin is the
(initially empty) linearization computed by the function,
and o is an outcome (initially none).

2: if O = Null then
3: Lin.append(o)
4: return Lin
5: end if
6: v = pop(O)
7: for value ∈ CPTA,o(v) do
8: temp = o+ value
9: Lin = LexO(A,O,Lin, temp)

10: end for
11: return Lin
12: end function

In Algorithm 1, CPTA,o(v) returns the ordered values
of variable v in CP-net A, given a partial assignment o to
a subset of variables. This linearization, which we denote
with LexO(A,O), where A is a CP-net and O an O-legal
order over the features of A, enforces that ordered pairs in
the induced partial order are ordered the same in the lin-
earization and that incomparable pairs are linearized using
the cp-tables.

A CP-net Distance Function
In what follows we will assume that all CP-nets are acyclic
and in minimal (non-degenerate) form, i.e., all arcs in the
dependency graph have a real dependency expressed in the
cp-statements, see the extended discussion in (Allen et al.
2017; 2016). The following definition is an extension of the
(Kendall 1938) τ (KT) distance with a penalty parameter p
defined for partial rankings by (Fagin et al. 2006).
Definition 1. Given two CP-nets A and B inducing partial
orders P and Q over the same set of outcomes U :

KTD(A,B) = KT (P,Q) =
∑

∀i,j∈U,i 6=j

Kp
i,j(P,Q) (1)

where i and j are two outcomes with i 6= j, we have:

1. Kp
i,j(P,Q) = 0 if i, j are ordered in the same way or they

are incomparable in both P and Q;
2. Kp

i,j(P,Q) = 1 if i, j are ordered inversely in P and Q;

3. Kp
i,j(P,Q) = p, 0.5 ≤ p < 1 if i, j are ordered in P

(resp. Q) and incomparable in Q (resp. P ).

In the previous definition we choose p ≥ 0.5 to make
KTD(A,B) a distance function, indeed if p < 0.5 the dis-
tance does not satisfy the triangle inequality. We also ex-
clude p = 1 so that there is a penalty for two outcomes being
considered incomparable in one and ordered in another CP-
net. This allows us, assuming O-legality, to define for each
CP-net a unique most distant CP-net.
Proposition 1. Given two acyclic CP-nets A and B that
are not O-legal, deciding if KTD(A,B) = 0 cannot be
computed in polynomial time unless P = NP .

The NP-complete problem of checking for equivalence
for two arbitrary CP-nets (Santhanam et al. 2013), i.e., de-
ciding if two CP-nets induce the same ordering, can be re-
duced to the problem of checking if their KTD distance is 0.
That is, if we had a polynomial time algorithm for deciding
if KTD(A,B) = 0 then we could decide the equivalence
problem for acyclic CP-nets. We know from (Boutilier et
al. 2004) that dominance testing for max-δ-connected CP-
nets, that is CP-nets where the maximum number of paths
between two variables is polynomially bounded in the size
of the CP-net is NP-complete. We know that O-legal, acyclic
CP-nets are a class of max-δ-connected CP-nets because the
O-legality constraint means that there are only a maximum
of n − 2 paths between two nodes. However, this does not
necessarily mean that the equivalence question is automati-
cally hard. As we will see, our lower bound can actually be
used to check equivalence for acyclic, O-legal CP-nets.



Since the question of dominance is closely related to that
of distance, the complexity of computing KTD for O-legal
CP-nets remains an important open question that we con-
jecture to be intractable. Due to this likely intractability we
will define another distance for CP-nets which can be com-
puted efficiently directly from the CP-nets without having to
explicitly compute the induced partial orders. This new dis-
tance is defined as the Kendal Tau distance of the two LexO
linearizations of the partial orders.
Definition 2. Given two O-legal CP-nets A and B, with m
features, we define:

CPD(A,B) = KT (LexO(A), LexO(B)) (2)
We show that CPD is a distance over O-legal CP-nets.

Theorem 1. Function CPD(A,B) satisfies the following
properties:

1. CPD(A,B) ≥ 0;
2. CPD(A,B) = CPD(B,A);
3. CPD(A,B) ≤ CPD(A,C) + CPD(C,B).
4. CPD(A,B) = 0 if and only if A = B;

Proof. Properties 1-3 are directly derived from the fact that
KTD is a distance function over total orders. Let us now fo-
cus on property 4. In our context, A = B if and only if they
induce the same partial order. It is, thus, obvious that if A =
B then CPD(A,B) = 0 since LexO(A) = LexO(B).
Let us now assume that A 6= B. Thus A and B induce dif-
ferent partial orders. In principle, what could happen is that
one partial order is a subset of the other. In such a case they
would have the same LexO linearizations and it would be
the case that CPD(A,B) = 0, despite them being differ-
ent. We need to show that this cannot be the case if A and B
are O-legal. Let us first assume that A and B have the same
dependency graph but that they differ in at least one ordering
in one CP-table. It is easy to see that in such a case there is
at least one pair of outcomes that are ordered in the opposite
way in the two induced partial orders. Assume that A and
B have a different dependency graph. Due to O-legality it
must be that there is a least an edge which is present, say,
in A and missing B. In this case by adding a non-redundant
dependency we are reversing the order of at least two out-
comes.

We will now show how CPD(A,B) can be directly com-
puted from CP-netsA andB, without having to compute the
linearizations. The computation comprises of two steps. The
first step, which we call, normalization, modifies A and B
so that each feature will have the same set of parents in both
CP-nets. This means that each feature will have in both nor-
malized CP-nets a CP-table with exactly the same number of
rows corresponding each to the same assignment to its par-
ents. The second step, broadly speaking, computes the con-
tribution to the distance of each difference in the CP-table
entries. We describe each step in turn.

Step 1: Normalization. Consider two CP-nets, A and B
over m variables V = {X1, . . . , Xm} each with binary do-
mains. We assume the two CP-nets are O-legal with respect
to a total order O = X1 < X2 < · · · < Xm−1 < Xm. We
note that O-legality implies that the Xi can only depend on
a subset of {X1, . . . , Xi−1}

Each variable Xi has a set of parents PaA(Xi) (resp.
PaB(Xi)) in A (resp. in B), and is annotated with a condi-
tional preference table in each CP-net, denoted CPTA(Xi)
and CPTB(Xi).

We note that, in general we will have that PaA(Xi) 6=
PaB(Xi). However, it is easy to extend the two CP-nets so
that in both Xi will have the same set of parents PaA(Xi)∪
PaB(Xi). This is done by adding redundant information to
the CP-tables, which does not alter the induced ordering.

For example, let us considerCPTA(Xi), then we will add
2PaA(Xi)∪PaB(Xi)−2PaA(Xi) copies of each original row to
CPTA(Xi), that is, one for each assignment to the variables
on which Xi depends in B but not in A. After this process is
applied to all the features in both CP-nets, each feature will
have the same parents in both CP-nets and its CP-tables will
have the same number of rows in both CP-nets. We denote
with A′ and B′ the resulting CP-nets.

We note that normalization can be seen as the reverse pro-
cess of CP-net reduction (Apt et al. 2008) which eliminates
redundant dependencies in a CP-net.

Step 2: Distance Calculation Given two normalized CP-
nets A and B, let diff(A,B) represent the set of CP-table
entries of B which are different in A and let var(i) = j if
CP-table entry i refers to variable Xj . Moreover, let m =
|V | and flw(X) denote the number of features following X
in order O. Let us define the two following quantities:

nSwap(A,B) =
∑

j∈diff(A,B)

2flw(var(j))+(m−1)−|PaB(var(j))|

(3)

which counts the number of inversions that are caused by
each different table entry and sums them up.
Theorem 2. Given two normalized CP-nets A and B, we
have:

CPD(A,B) = nSwap(A,B) (4)
We provide an example of how a difference in a CP-table

entry affects the LexO linearization.
Example 0.1. Consider a CP-net with three binary features,
A, B, and C, with domains containing f and f if F is
the name of the feature, and with the cp-statements as fol-
lows: a � a, b � b, c � c. A linearization of the partial
order induced by this CP-net can be obtained by impos-
ing an order over the variables, say Let variable ordering
O = A � B � C. The LexO(A) is as follows:

A1Zone︷ ︸︸ ︷
B1Zone︷ ︸︸ ︷
abc � abc �

B2Zone︷ ︸︸ ︷
abc � abc �

A2zone︷ ︸︸ ︷
B3zone︷ ︸︸ ︷

abc � abc �

B4zone︷ ︸︸ ︷
abc � abc



Now, consider changing only the cp-statement regarding
A to a � a. Then, the linearization of this new CP-net can
be obtained by the previous one by swapping the first out-
come in the A1zone with the first outcome in the A2zone,
the second outcome in the A1zone with the second outcome
in the A2zone and so on. Moreover, the number of swaps
is directly dependent on the number of variables that come
after A in the total order.

From Theorem 2 we can see that 0 ≤ CPD(A,B) ≤
2m−1(2m − 1), where m is the number of features. In par-
ticular:
• CPD(A,B) = 0 when the two CP-nets have the same

dependency graph and cp-tables and so they are repre-
senting the same preferences;

• CPD(A,B) = 2m−1(2m − 1) when the two CP-nets
have the same dependency graph but cp-tables with re-
versed entries, so they are representing preferences that
are opposite to each other.

Notice that variables with different cp-statements in the rep-
resentation give more value to the distance if they come first
in the total order: the value decreases as the position in the
total order increases. For instance it is easy to prove that if
the cp-statement of the first variable in the total order differs,
than CPD ≥ 2m−2(2m − 1).

Supporting Ethical Decisions
Ethical principles are modelled via a CP-net, say S, and an
individual models her preferences via another CP-net, say
B. We assume that these two CP-nets have the same fea-
tures.

Of course this is a restriction and in general we think the
features of these two CP-nets can overlap but not necessarily
be the same. We are studying what happens when the two
sets of features do not coincide. But for the purpose of this
paper we will assume they do coincide.

Given the ethical principles and the individual’s prefer-
ences, we need to guide the individual in making decisions
that are not too unethical. To do this, we propose to proceed
as follows:

1. We set two distance thresholds: one between CP-nets
(ranging between 0 and 1), and another one between de-
cisions (ranging between 1 and n).

2. We check if the two CP-netsA andB are less distant than
t1. In this step, we use CPD to compute the distance.

3. If so, the individual is allowed to choose the top outcome
of his preference CP-net.

4. If not, then the individual needs to move down its pref-
erence ordering to less preferred decisions, until he finds
one that is closer than t2 to the optimal ethical decision.
This is a compromise decision between what the prefer-
ences say and what the ethical principles recommend.

Empirical Analysis
We divide the empirical evaluation in two parts. Firstly, we
evaluate the performances of the CPD distance by checking

running time and deviation from the exact KTD distance.
The first part of the experiments shows that in terms of com-
putation time and error rate, our approximation performs ex-
tremely well. The second part of our experiments focuses on
the ethical perspective. We show how the distance can be
used in an ethical scenario to evaluate how much an individ-
ual decision maker deviates from an adopted ethical princi-
ple modeled as a CP-net.

Ethical Scenario
Given an ethical principle and the preference of an individ-
ual, both encoded as CP-nets, we want to understand if fol-
lowing the preferences will lead to an ethical action. Since in
this scenario individuals want to act ethically, firstly the in-
dividual determines whether she can use her most preferred
choice by checking if her CP-net is “sufficiently close” to
the ethical CP-net. If these two CP-nets are farther apart than
some threshold t1, then we proceed down the preference or-
dering till we find a decision that is sufficiently close to the
optimal ethical decision, according to another threshold t2.

We represent the ethical principles with a CP-net A and
the individual’s preferences with a CP-netB, and we assume
that these two CP-nets have the same features. We judge that
the individual is acting ethically ifCPD(A,B) ≤ t1. If yes,
the individual knows that her preferences are pretty ethical
and she can choose the best outcome induced by her CP-net.

If instead CPD(A,B) > t1, we compute how many
worsening flips we need to apply to her best decision (ac-
cording to her preferences) to get to a decision that is closer
than t2 flips from the optimal ethical decision.

This empirical analysis is run varying n, t1 and t2, where
n is the number of features, and t1 and t2 are the tolerances.
We run experiments varying the number of features 2 ≤ n ≤
8. For each value of n we vary t1 ∈ {0, 0.1, 0.2, 0.4, 0.8}.
Low values of t1 represents scenarios where the tolerance
is absent or low. This means that, in order for a decision
maker to take their first choice, they should have preferences
very close to the ethical principle. Larger values of t1 model
less strict ethics, where people have more freedom of choice.
For each value of n and t1, we vary the value of t2 (2 ≤
t2 ≤ (n + 2)/2). This again represents scenarios where the
freedom of individuals vary.

Given the values of n, t1,, and t2 we generate 1000 pairs
of CP-nets (A,B) from a uniform distribution using the soft-
ware described by (Allen et al. 2017; 2016). We compared
values of the approximate CPD distance with the real KTD
distance. This shows us how many times CPD is wrong and
how much individuals need to sacrifice of their preferences
in order to be ethical. We consider and report the following
cases which represent the confusion matrix of our experi-
ment:

1. True Positive (TP): CPD(A,B) ≤ t1 and
KTD(A,B) ≤ t1. In this case, individual prefer-
ences are close to the ethical principles and decision
makers choose their best alternative;

2. True Negative (TN): CPD(A,B) > t1 and
KTD(A,B) > t1. In this case, individual prefer-
ences are not close to the ethical principles and the



decision makers must find a compromise;
3. False Positive (FP): CPD(A,B) ≤ t1 and
KTD(A,B) > t1. In this case, erroneously, indi-
viduals think they are acting ethically and consequently
choose their best alternative even though it is not ethical;

4. False Negative (FN): CPD(A,B) > t1 and
KTD(A,B) ≤ t1. In this case, erroneously indi-
viduals think they are not acting ethically and they select
a compromise decision even though they could select
their top preferred decision.
The number of TP + TN gives an idea of the accuracy

of the distance; the higher this value, the higher confidence
individuals can have in using the approximation of the dis-
tance to understand whether they are ethical or not.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 0,1 0,2 0,4 0,8

t1 values

Ethical Analysis

FP FN TP TN

Figure 1: Percentage of TP, TN, FP, FN: the chart reports the
number of cases for which CPD and KTD agree, or not,
on the comparison based on the tolerance t1. This gives an
idea of the accuracy of the approximated distance.

Figure 1 shows the confusion matrix for n = 7 and t2 = 4
while varying t1. Notice that, as expected, when the toler-
ance t1 is null or low, e.g., t1 = 0 or t1 = 0.2, individuals
can almost never select their their best choice. Indeed, for
t1 = 0 the percentage of True Positives (purple bar) is close
to 0% while for t2 = 0.2 the percentage of True Positive
is around 5%. This means that the decision makers prefer-
ences must be close to the ethical principle in order to have
the freedom to choosing their best choice. Instead, when the
tolerance is higher, they have more freedom to choose what
they like. For example, with t1 = 0.4, the percentage of True
Positives (purple bar) is close to 40% while for t1 = 0.8 it
is more than 80%.

The next important question is: What happens when indi-
viduals cannot choose their first choice and have to look for
another one which is closer to the ethical principles? Figure
2 reports the percentage of cases in which individuals have
to find a compromise because their preferences are not close
to the ethical principles, according to t1,. For these cases
we quantify the amount of compromise in terms of positions
in the induced partial order. As before, when the tolerance
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Figure 2: Compromises analysis: the charts reports a com-
parison between the number of times that individuals have
preferences which are not close to the ethics and for which
they have to look for a compromise and the quality of the
compromise in terms of distance from their best choice.

is strict, an individual has to look for a compromise nearly
every time. It is interesting to notice that the amount of com-
promise varies based on the value of t2 and seems to be not
influenced by t1. This is quite natural, when t2 = 4 it means
that the individual has to find a choice that is in the top five
positions of the ethical ordering in order to reach a compro-
mise. This means that such a choice, on average, is in the
first two positions of the individual’s preference (red line
in figure). The lower the value of t2, the harder it becomes
for the individual to find an ethical decision, and she has to
descend down her preference order, on average, up to the
fourth position to find an acceptable alternative.

Conclusions
In order to model and reason with both preferences and
ethical principles in a decision making scenario, we have
proposed a notion of distance between CP-nets, providing
both a theoretical study and an experimental evaluation of
its properties. We show that our approximation is both accu-
rate in practice and efficient to compute.

Several extensions to our setting can be considered for the
future. Indeed, we have made some assumptions on the two
CP-nets for which we can compute the distance, that would
be useful to relax. First, the two CP-nets over which we de-
fine the CPD distance have the same features, and with the
same domains, but can differ in their dependency structure
and CP-tables. It is important to also cover the case of CP-
nets that may have different features and domains. More-
over, we have also assumed the two CP-nets are O-legal,
that is, there is a total order of the CP-nets features that is
compatible with the dependency links of both CP-nets. Intu-
itively, this means that the preferences are the ethical princi-
ples are not indicating completely opposite priorities. How-
ever, there could be situations where this is actually the case,
and it is important to know how to combine preferences and
ethical principles also in this case.
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