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Abstract. In this paper we present a two-fold generalization of conditional pref-
erence networks (CP-nets) that incorporates uncertainty. CP-nets are a formal tool
to model qualitative conditional statements (cp-statements) about preferences
over a set of objects. They are inherently static structures, both in their ability
to capture dependencies between objects and in their expression of preferences
over features of a particular object. Moreover, CP-nets do not provide the abil-
ity to express uncertainty over the preference statements. We present and study
a generalization of CP-nets which supports changes and allows for encoding un-
certainty, expressed in probabilistic terms, over the structure of the dependency
links and over the individual preference relations.
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1 Introduction

CP-nets are used to model conditional information about preferences [2]. Preferences
play a key role in automated decision making [9] and there is some experimental ev-
idence suggesting qualitative preferences are more accurate than quantitative prefer-
ences elicited from individuals in uncertain information settings [19]. CP-nets are com-
pact, arguably quite natural, intuitive in many circumstances, and widely used in many
applications in computer science such as recommendation engines [8].

Real life scenarios are often dynamic. A user can change his mind over time or the
system under consideration can change its laws. Preferences may change over time.
Thus, we need a structure that can respond to change through updates, without the need
to completely rebuild the structure. Additionally, we often meet situations characterized
by some form of uncertainty. We may be uncertain about our preferences or on what
features our preferences depend. In order to model this, we need a structure that includes
probabilistic information. The need for encoding uncertain, qualitative information has
seen some work in the recommendation engine area [7,16] and is a motivating example.

Consider a household of two people and their Netflix account. The recommendation
engine only observes what movies are actually watched, what time they are watched,
and their final rating. There are two people in this house and let us say that one prefers
drama movies to action movies while the other has the opposite preference. When mak-
ing a recommendation about what type of movie to watch, the engine may have several



solid facts. Comedies may always be watched in the evening, so we can put a deter-
ministic, causal link between time of day and type of movie. However, we cannot ob-
serve which user is sitting in front of the television at a given time. There is strong
evidence from the behavioral social sciences showing that adding uncertainty to pref-
erence frameworks may be a way to reconcile transitivity when eliciting input from
users [17], among other nice properties [12]. Using this idea, we add a probabilistic de-
pendency between our belief about who is in front of the television and what we should
recommend. We may want to update the probability associated with this belief based
on the browsing or other real-time observable habits of the user. To do this we need a
updateable and changeable structure that allows us to encode uncertainty.

We propose and study the complexity of reasoning with PCP-nets, for Probabilistic
CP-nets, which allow for uncertainty and online modification of the dependency struc-
ture and preferences. PCP-nets provide a way to express probabilities over dependency
links and probability distributions over preference orderings in conditional preference
statements. Given a PCP-net, we show how to find the most probable optimal outcome.
Additionally, since a PCP-net defines a probability distribution over a set of CP-nets,
we also show how to find the most probable induced CP-net.

2 Background and Related Work

Probabilistic reasoning has received a lot of attention in Computer Science [8] and
other areas [12]. Elicitation and modeling of preferences has also been considered in
probabilistic domains such as POMDPs [3]. Recently, another generalization of CP-
nets to include probabilities was introduced by Bigot et al. [1]. The model proposed by
Bigot et al. restricts probabilities to be defined on orderings. We allow for probabilities
on edges but, as we will show, this is a somewhat redundant specification that is useful
for elicitation. Moreover, Bigot et al. focus on optimization and dominance testing in
the special tractable case of tree-structured networks, we base our algorithmic approach
on a more general connection with Bayesian networks. Reconciling these two models
is an important direction for future work.

2.1 CP-nets

CP-nets are a graphical model for compactly representing conditional and qualitative
preference relations [2]. They exploit conditional preferential independence by decom-
posing an agent’s preferences via the ceteris paribus (cp) assumption (all other things
being equal). CP-nets bear some similarity to Bayesian networks (see 2.2). Both use
directed graphs where each node stands for a domain variable, and assume a set of
features F = {X1, . . . ,Xn} with finite domains D(X1), . . . ,D(Xn). For each feature Xi,
each user specifies a set of parent features Pa(Xi) that can affect her preferences over
the values of Xi. This defines a dependency graph in which each node Xi has Pa(Xi) as
its immediate predecessors. Given this structural information, the user explicitly speci-
fies her preference over the values of Xi for each complete assignment on Pa(Xi). This
preference is a total or partial order over D(X) [2].



Note that the number of complete assignments over a set of variables is exponential
in the size of the set. Throughout this paper, we assume there is an implicit constant that
specifies the maximum number of parent features, |Pa(X)|, that any feature may have.
With this restriction, and an implicit bound on |D(X)|, we can and do treat the size of
the conditional preference representation for any X as a constant.

An acyclic CP-net is one in which the dependency graph is acyclic. A CP-net need
not be acyclic. For example, my preference for the entree may depend on the choice of
the main course, and my preference for the main course may depend on the choice of
the entree. However in this paper we focus on acyclic CP-nets.

The semantics of CP-nets depends on the notion of a worsening flip. A worsening
flip is a change in the value of a variable to a value which is less preferred by the cp-
statement for that variable. We say that one outcome α is better than another outcome
β (written α > β ) if and only if there is a chain of worsening flips from α to β . This
definition induces a preorder over the outcomes.

In general, finding optimal outcomes and testing for optimality in this ordering is
NP-hard. However, in acyclic CP-nets, there is only one optimal outcome and this can
be found in as many steps as the number of features via a sweep forward procedure
[2]. We sweep through the CP-net, following the arrows in the dependency graph and
assigning at each step the most preferred value in the preference table. Each step in the
sweep forward procedure is exponential in the number of parents of the current feature,
and there are as many steps as features. In this paper we assume the number of parents
is bounded, so this algorithm takes time polynomial in the size of the CP-net.

Determining if one outcome is better than another according to this ordering (called
a dominance query) is NP-hard even for acyclic CP-nets [6,10]. Whilst tractable special
cases exist, there are also acyclic CP-nets in which there are exponentially long chains
of worsening flips between two outcomes.

2.2 Bayesian Networks

Bayesian networks (BNs) allow for a compact representation of uncertain knowledge
and for a rigorous way of reasoning with this knowledge [15]. A BN is a directed graph
where each node corresponds to a random variable; the set of nodes is denoted by V ;
a set of directed edges connects pairs of nodes (if there is an edge from node X to
node Y , X is said to be a parent of Y ); the graph has no directed cycles and hence is a
directed acyclic graph (DAG); each node Xi has a conditional probability distribution
P(Xi|Parents(Xi)) that quantifies the effect of the parents on the node. If the nodes are
discrete variables, each Xi has a conditional probability table (CPT) that contains the
conditional probability distribution, P(Xi|Parents(Xi)). Each CPT row must therefore
have probabilities that sum to 1.

Inference in a BN corresponds to calculating P(X |E) where both X and E are sets
of variables of the BN, or to finding the most probable assignment for X given E. The
variables in E are called evidence.

There are three standard inference tasks in BNs: belief updating, which is finding
the probability of a variable or set of variables, possibly given evidence; finding the most
probable explanation (MPE), that is, the most probable assignment for all the variables
given evidence; and finding the maximum a-posteriori hypothesis (MAP), where we



are interested in a subset of m variables A1, · · · ,Am and we want to compute the most
probable assignment of {A1, · · · ,Am} by summing over the values of all combinations
of V \{A1, · · · ,Am}∪E, where E is a (possibly empty) set of evidence variables.

The inference tasks are computationally hard. However, they can be solved in poly-
nomial time if we impose some restrictions on the topology of the BNs such as bounding
the induced width [4, 5]. Given an ordering of the variables of a BN, these algorithms
have a number of steps linear in the number of variables, and each step is exponential
in the number of variables preceding the current one in the ordering and connected to it
in the BN graph. The largest of these numbers is the induced width of the graph of the
BN. Different variable orderings give steps with different complexity. Finding a good
variable ordering is a difficult problem. If we assume the induced width is bounded,
the overall algorithm is polynomial, and if |Pa(X)| is bounded by a constant, then the
induced width is also bounded.

3 Probabilistic CP-nets

We define a generalization of traditional CP-nets with probabilities on individual cp-
statements as well as on the dependency structure.We assume that the probabilities
expressed over the dependency structure is consistent with the probabilities expressed
over the variable orderings themselves. A model defined in this way allows us to use
algorithms and techniques from BNs to efficiently compute outputs for common queries
when the size of the dependency graph is bounded.

A PCP-net (for Probabilistic CP-net) is a CP-net where: (1) each dependency link
is associated with a probability of existence consistent with the given variable ordering;
and (2) for each feature A, instead of giving a preference ordering over the domain of
A, we give a probability distribution over the set of all preference orderings for A.

More precisely, given a feature A in a PCP-net, its PCP-table is a table associating
each combination of the values of the parent features of A to a probability distribution
over the set of total orderings over the domain of A.

Probabilities expressed on the dependency links and the corresponding PCP-tables
are not independent. If we consider all the possible ways in which we can obtain a
CP-table from PCP-table by choosing specific orderings we see that we can divide the
CP-tables into two classes: those representing a “true” dependency and those represent-
ing independence of the child feature. Each induced CP-table is associated to the joint
probability of the orderings it contains. The probability of activation or non-activation
of a dependency must coincide with the sum of probabilities associated to the CP-tables
where the dependency is activated or not activated. Otherwise, the probability of the
dependency and the probability of the ordering are not reconcilable and the structure
itself expresses an impossible relationship.

Example 1. Consider the PCP-net C shown with two features, A and B, with domains
DA = {a1,a2} and DB = {b1,b2}. The preferences on B depend on the assignment to A
with probability p. Given the probability assignment to the orderings of B given A we
have that p = q1 · (1−q2)+(1−q1) ·q2.



Structure:

A B
p

Feature A:
A orderings P

a1 > a2 r
a2 > a1 1− r

Feature B:
A values B orderings P

a1
b1 > b2 q1
b2 > b1 1−q1

a2
b1 > b2 q2
b2 > b1 1−q2

The induced CP-net with probability P= (1− r) · (1−q1) ·q2 is shown below.

Structure:
A B

Feature A:
A orderings

a2 > a1

Feature B:
A values B orderings

a1 b2 > b1
a2 b1 > b2

Given a PCP-net C , a CP-net induced by C has the same features and domains as
C . The dependency edges of the induced CP-net are a subset of the edges in the PCP-net
which must contain all edges with probability 1. CP-nets induced by the same PCP-net
may, therefore, have different dependency graphs. Moreover, the CP-tables are gener-
ated accordingly for the chosen edges. For each independent feature, one ordering over
its domain (i.e., a row in its PCP-table) is selected. Similarly, for dependent features, an
ordering is selected for each combination of the values of parent features. Each induced
CP-net has an associated probability obtained from the PCP-net by taking the product
of the probabilities of the deterministic orderings chosen in the CP-net.

One may note that the probabilities on edges are redundant whenever the probabili-
ties in the PCP-tables are completely specified. However, we have chosen the presented
formalism as it may be useful for elicitation purposes. Consider a settings where we are
attempting to determine the strength of a relationship between two variables, such as the
relationship between time of day and type of movie desired. It may be easier for people
to describe this relationship directly rather than express the underlying joint probability
distribution as humans are generally poor at estimating and working with probability
directly [20]. Using this elicitation method we could then assume some underlying dis-
tribution for the variable ordering (skewed one way or another based on evidence). We
leave an exploration of this topic for future work and focus on the base case, where
PCP-nets are consistent, for the current work.

Since we have a probability distribution on the set of all induced CP-nets, it is
important to be able to find the most probable induced CP-net. We are also interested in
finding the most probable optimal outcome. Given a PCP-net and an outcome (that is, a
value for each feature), the probability of such an outcome being optimal corresponds
to the sum of the probabilities of the CP-nets that have that outcome as optimal.

4 Reasoning with PCP-nets

Given a PCP-net we study mainly two tasks: finding the most probable induced CP-
net and finding the most probable optimal outcome. These two reasoning tasks have
slightly different semantics and may be of use to different groups in the preference
reasoning community. The most probable induced CP-net is analogous, in our Netflix



example from earlier, to the CP-net that most likely maps onto a viewer in the house-
hold. Whereas, the most probable optimal outcome would be what a recommendation
engine should suggest to maximize the probability of a correct recommendation. One
is an aggregated model, that still retains usefulness for prediction and sampling while
the other is an aggregated outcome, that maximizes the probability of being correct.

4.1 The Most Probable Induced CP-net

We reduce the problem of finding the most probable induced CP-net to that of finding
an assignment with maximal joint probability of an appropriately defined BN.

Given a PCP-net C , we define the BN called general network, or G-net(C ), asso-
ciated with C , as follows. We create a variable for each independent feature A of the
PCP-net, with domain equal to the set of all possible total orderings over the domain of
A. The probability distribution over the orderings is given by the PCP-table of A. For
each dependent feature B of the PCP-net, we add as many variables to the G-net as there
are combinations of value assignments to the parents. Each of these variables B1 to Bn
will have the same domain: the set of total orderings over the domain of B.

Consider the PCP-net with two features, C , from Example 1 whose corresponding
G-net is shown below. The variables have domains DA = {a1 > a2,a2 > a1}, DBa1

=
{b1 > b2,b2 > b1}, and DBa2

= {b1 > b2,b2 > b1}.

A

Ba1 Ba2

Variable A:
A P

a1 > a2 r
a2 > a1 1− r

Variable Ba1 :

Ba1 P
b1 > b2 q1
b2 > b1 1−q1

Variable Ba2 :

Ba2 P
b1 > b2 q2
b2 > b1 1−q2

Theorem 1. Given a PCP-net C and the corresponding G-net N, there is a one-to-one
correspondence between the assignments of N and the induced CP-nets of C .

Theorem 2. Given a PCP-net C , the probability of realizing one of its induced CP-nets
Ci, is the joint probability of the corresponding assignment in the G-net for C .

Proof. There is a one-to-one correspondence between rows in the PCP-tables and nodes
in the G-net. Additionally, choosing a particular ordering in a PCP-net row corresponds
to an assignment to a variable in the G-net. ut

Theorem 3. The probabilities over the induced CP-nets of a certain PCP-net form a
probability distribution.

Proof. The probability defined in Theorem 2 is computed as a product of non-negative
factors, thus it is non-negative. Moreover, the sum of the probabilities of all the CP-nets
in the set of the induced CP-nets is equal to 1, because there’s a 1-1 correspondence
between the assignments of the G-net with positive probability and the induced CP-
nets, and the sum of the probabilities of all the assignments of a BN is equal to 1. ut

Theorem 4. Given a PCP-net C and its induced CP-nets, the most probable of the
induced CP-nets is the variable assignment with maximal joint probability in the G-net
for C .



4.2 The Most Probable Optimal Outcome

The most probable optimal outcome is the outcome that occurs with the greatest prob-
ability as the optimal in the set of induced CP-nets. The probability that an outcome o
is optimal corresponds to the sum of the probabilities of the CP-nets that have o as the
optimal outcome. Observe that the most probable optimal outcome may not be the op-
timal outcome of the most probable CP-net. Consider a PCP-net with only one feature
A with domain DA = {a1,a2,a3} and let a1 > a2 > a3 = 0.3, a1 > a3 > a2 = 0.3, and
a3 > a2 > a1 = 0.4. The most probable CP-net is the one corresponding to the third
ordering and it has the optimal outcome a3. The other CP-nets have a1 as optimal, so
P(a1) = 0.6 and P(a3) = 0.4. The most probable optimal outcome is therefore a1 but
the optimal outcome of the most probable CP-net is a3.

To find the most probable optimal outcome, we cannot find the most probable in-
duced CP-net by the G-net procedure described above and then find its optimal out-
come; we must make use of another BN which we call the optimal network.

Given a PCP-net C , the optimal network (Opt-net) for C is a BN with the same
dependencies graph as C . Thus, the Opt-net has a variable for each of the PCP-net’s
features. The domains of the variables in the Opt-net are the values of the correspond-
ing features that are ranked first in at least one ordering with non-zero probability. The
conditional probability tables of the Opt-net are obtained from the corresponding PCP-
tables as follows: for each assignment of the parent variables, we consider the corre-
sponding probability distribution over the values of the dependent variable defined in
the PCP-table. The probability of a value for the dependent variable is the sum of the
probabilities of the orderings that have that particular value as most preferred accord-
ing to that distribution. Notice that our construction applies even when there are cyclic
dependences in the corresponding PCP-net.

Example 2. Consider the PCP-net C with three features A, B and C with domains DA =
{a1,a2}, DB = {b1,b2} and DC = {c1,c2,c3}.The Opt-net has the same dependency
graph as C , with three variables A, B and C with domains: DA = {a1,a2}, DB = {b1,b2}
and DC = {c1,c2}, and two edges AC and BC. The domain of variable C in the Opt-net
does not contain value c3 because it never appears as most preferred in any ordering.
Therefore, the Opt-net has a table for entry a1b2 where c1 appears with probability 0.2
and c2 appears with probability 0.8.

Structure:
A C B

Variable A:
ordering for A P

a1 > a2 0.8
a2 > a1 0.2

Variable B:
ordering for B P

b1 > b2 0.7
b2 > b1 0.3

Variable C:
A & B ordering for C P

a1 b1
c1 > c2 > c3 0.3
c2 > c1 > c3 0.7

a1 b2

c1 > c2 > c3 0.2
c2 > c1 > c3 0.4
c2 > c3 > c1 0.4

a2 b1
c1 > c3 > c2 0.4
c2 > c3 > c1 0.6

a2 b2
c1 > c2 > c3 0.1
c2 > c1 > c3 0.9



Theorem 5. Given a PCP-net C and its Opt-net, there is a one-to-one correspondence
between the assignments (with non-zero probability) of the Opt-net and the outcomes
that are optimal in at least one induced CP-net of C .

Theorem 6. Given a PCP-net C , the probability that an outcome is optimal is the
joint probability of the corresponding assignment in the optimal network. If no such
corresponding assignment exists, then the probability of being optimal is 0.

Proof. By construction, the set of assignments of the Opt-net of C is a subset of those
of C . By the definition of the Opt-net, if an assignment of C is not an assignment of
the Opt-net, then it cannot be optimal in any induced CP-net.

Let us now focus on the assignments of C that have a corresponding assignment in
the Opt-net. Let x = (x1,x2, ...,xn) be one of these assignments. We denote by Popt(x)
the joint probability of x, P(X1 = x1, ...,Xn = xn) in the Opt-net. We recall that the
probability that x is optimal in the PCP-net is the sum of the probabilities of the induced
CP-nets that have assignment x as optimal. We call this probability Pcp(x). We must
prove that Popt(x) = Pcp(x).

Let us consider Ax, the set of induced CP-nets that have x as their optimal assign-
ment; giving Pcp(x) = ∑C∈Ax P(C ). When we compute the optimal value for a CP-net,
we sweep forward, starting from the independent features, assigning features their most
preferred value. This means that only one subset of the rows of the CP-tables is con-
sidered when computing the optimal outcome. We can thus split a CP-net C into two
parts, one affecting the choice of the optimal outcome (denoted with C∗) and one not
involved in it (denoted with C−∗). If we consider the probability that that CP-net is
induced by the PCP-net, we see that these two parts are independent. Thus we have
Pcp(x) = ∑C∈Ax P(C ) = ∑C∈Ax P(C∗)P(C−∗).

Regarding C∗, observe that the optimal outcome x can be produced in many dif-
ferent ways, as there can be many different orderings that produce the same result. For
example the orderings a1 > a2 > a3 and a1 > a3 > a4 produce both the optimal value a1
for variable X1. So we can do a disjoint partition of the set Ax into k subsets Ax1 , ...,Axk
for some k.

Two CP-nets C and D that belong to the same Axi are equal in the part that ac-
tively affects the choice of the optimal value and different in the other parts: C∗ =
D∗ and C−∗ 6= D−∗.

Let C i
∗ be the part that is equal for all the members of Axi . The probability becomes:

Pcp(x)=∑
k
i=1P(C i

∗)∑C∈Axi
P(C−∗). We note that ∑C∈Axi

P(C−∗)= 1 ∀i= 1, ...,k, since
we are summing the probability of all possible cases regarding C−∗. Thus the prob-
ability becomes Pcp(x) = ∑

k
i=1P(C i

∗). However, we have P(X1 = x1, ...,Xn = xn) =

∑
k
i=1P(C i

∗) and, thus, Pcp(x) = Popt(x). since we built the rows of the probability ta-
bles for the variables X1, ...,Xn by summing the probability of the orderings that have
the same head. This is the same as summing the probabilities over the subset Axi . ut

Theorem 7. To find the most probable optimal outcome for a PCP-net C , it is sufficient
to compute the assignment with the maximal joint probability of its optimal network.



5 PCP-nets and Induced CP-nets

A PCP-net defines a probability distribution over a set of induced CP-nets. However,
this step is not always reversible: below we show that, given a probability distribution
over a set of CP-nets, all with the same features and domains, there may be no PCP-
net such that the given CP-nets are its induced CP-nets. However, the function that
maps a PCP-net to its set of induced CP-nets is injective. Therefore, if there is a PCP-
net which induces a set of CP-nets, we can find it quickly. This observation may be
an interesting starting point for future work. We may be able to use CP-nets elicited
from individuals to generate a PCP-net with which to “hot start” and create highly
probable configurations for a recommendation system that is responsible for suggesting
configurations for products to new customers [7, 16].

Theorem 8. Given a probability distribution over a set of CP-nets (even if they have
the same dependency graph), there may exist no PCP-net inducing it.

Proof. Consider the following four CP-nets (C1, C2, C3 and C4) defined on the same
variables: A and B. The two features have domains DA = {a1,a2} and DB = {b1,b2}.
The probability distribution on the four CP-nets is defined as follows:

– C1 has probability P(C1) = 0.3 and CP-tables:

A B ordering for A
a1 > a2

A ordering for B
a1 b1 > b2
a2 b2 > b1

– C2 has probability P(C2) = 0.2 and CP-tables:

A B ordering for A
a1 > a2

ordering for B
b1 > b2

– C3 has probability P(C3) = 0.1 and CP-tables:

A B ordering for A
a1 > a2

ordering for B
b2 > b1

– C4 has probability P(C4) = 0.4 and CP-tables:

A B ordering for A
a1 > a2

A ordering for B
a1 b2 > b1
a2 b1 > b2

If C1, C2, C3 and C4 were all the induced CP-nets of a PCP-net, this PCP-net would have
the dependency graph (on the features A and B with the relationship having probability
k of occurring):

A B
k

and the following PCP-tables:



ordering for A
a1 > a2

A ordering for B probability

a1
b1 > b2 p1
b2 > b1 p2

a2
b1 > b2 p3
b2 > b1 p4

where the values p1, p2, p3 and p4 need to be solutions of the following system of
equations:

p1 p3 = 0.2
p2 p3 = 0.4
p1 p4 = 0.3
p2 p4 = 0.1


0≤ p1 ≤ 1
0≤ p2 ≤ 1
0≤ p3 ≤ 1
0≤ p4 ≤ 1

{
p1 + p2 = 1
p3 + p4 = 1

However, such a system has no solution. ut

Theorem 9. Given a probability distribution over a set of CP-nets, we can compute a
PCP-net to fit this distribution, if it exists.

6 Updating Probabilistic CP-nets

We now turn our attention to modifications to the structure of a PCP-net. These changes
can be implemented in an efficient way and their effects on computing the most prob-
able optimal outcome and the most probable induced CP-net are minimal, in terms of
complexity. Modifying the structure of the PCP-net is similar to entering evidence in a
BN framework. By changing an arc or setting an ordering for a variable we can fix parts
of the probability distribution and compute the outcomes of the resulting structure.

To add or delete a dependency or feature we just update the respective probability
tables. This may involve deleting redundancy when we delete a feature. Due to the
independence assumptions, we can modify probabilities over ordering and features at
a local level, with no need to recompute the entire structure when new information is
added.

When we modify a PCP-net C we also need to modify the probability tables in the
associated G-net. This can change the most probable induced CP-net and therefore we
need to recompute the outcome of the G-net.

To add or delete a dependency or feature, independent or dependent, we need to add
or delete (or both) a number of nodes in the G-net which is exponential in the maximum
number of parents which we assume to be bounded. The same can be said with respect
to updating a probability table with either evidence or changing the distribution.

When we modify a PCP-net C , the changes affect its Opt-net. Consider the depen-
dency of feature B on feature A. When we add or delete this dependency, or when we
change its probability, we only need to recompute the probability table of B in the Opt-
net. When computing the most probable optimal outcome, we note that, in the worst
case, we must recompute the whole maximal joint probability of the Opt-net. The same
can be said when we delete a feature, as this amounts to the deletion of a set of depen-
dencies, or when we modify the probability distribution over the orderings on B for a
specific assignment to all of its parents. When we add a feature A to C , we must add



the corresponding node in the Opt-net and generate the corresponding probability ta-
ble. This new node is independent. Thus, revising the current most probable optimal
outcome is easy: the new optimal is the current one extended with the optimal value of
the new feature.

7 Conclusions and Future Work

We have defined and shown how to reason with a generalized version of CP-nets, called
PCP-nets, which can model probabilistic uncertainty and be updated without recomput-
ing their entire structure. We have studied how to reason with these new structures in
terms of optimality. PCP-nets can be seen as a way to bring together BNs and CP-nets,
thus allowing to model preference and probability information in one unified structure.

We plan to study dominance queries and optimality tests in PCP-nets, as well as
to study appropriate eliciting methods for both preferences and probabilities. Bigot
et al. [1] have begun this line of inquiry on their model and show that, for PCP-nets
that have a tree structure, dominance testing is tractable. We would also like to further
explore, as Bigot et al., how our results related to the notion of local Condorcet win-
ners in CP-net aggregation [21] as well as other issues in CP-net aggregation such as
bribery [13, 14] and joint decision making [11]. Additionally, we have made several
assumptions to bound the reasoning complexity of PCP-nets; we would like to relax
these bounds or obtain results about approximability when these assumptions are lifted.
We also plan to consider the use of PCP-nets in a multi-agent setting, where classical
CP-nets have already been considered [18]. In this setting, PCP-nets can be used to
represent probabilistic information on the preferences of a population.

Acknowledgments

This work is supported by the National Science Foundation, under grants CCF-1049360
and IIS-1107011. Any opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily reflect the views
of the National Science Foundation.

NICTA is funded by the Australian Government through the Department of Broad-
band, Communications and the Digital Economy and the Australian Research Council
(ARC) through the ICT Centre of Excellence program. This research is also funded by
AOARD grant 124056.

References

1. Bigot, D., Fargier, H., Mengin, J., Zanuttini, B.: Probabilistic conditional preference net-
works. In: Proc. 29th Conf. on Uncertainty in Artificial Intelligence (UAI) (2013)

2. Boutilier, C., Brafman, R., Domshlak, C., Hoos, H., Poole, D.: CP-nets: A tool for represent-
ing and reasoning with conditional ceteris paribus preference statements. Journal of Artificial
Intelligence Research 21, 135–191 (2004)

3. Boutilier, C.: A POMDP formulation of preference elicitation problems. In: Proc. 18th AAAI
Conference on Artificial Intelligence. pp. 239–246 (2002)



4. D’Ambrosio, B.: Inference in Bayesian Networks. AI Magazine 20(2), 21 (1999)
5. Dechter, R.: Bucket elimination: A unifying framework for reasoning. Artificial Intelligence

113(1-2), 41–85 (1999)
6. Domshlak, C., Brafman, R.: CP-nets: Reasoning and consistency testing. In: Proc. 8th Intl.

Conf. on Principles and Knowledge Representation and Reasoning (KRR) (2002)
7. Faltings, B., Torrens, M., Pu, P.: Solution generation with qualitative models of preferences.

Computational Intelligence 20(2), 246–263 (2004)
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