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We study the computational complexity of bribery and manipulation schemes 
for sports tournaments with uncertain information. We introduce a general 
probabilistic model for multi-round tournaments and consider several special types 
of tournament: challenge (or caterpillar); cup; and round robin. In some ways, 
tournaments are similar to the sequential pair-wise, cup and Copeland voting rules. 
The complexity of bribery and manipulation are well studied for elections, usually 
assuming deterministic information about votes and results. We assume that for 
tournament entrants i and j, the probability that i beats j and the costs of lowering 
each probability by fixed increments are known to the manipulators. We provide 
complexity analyses for several problems related to manipulation and bribery for 
the various types of tournaments. Complexities range from probabilistic log space 
to NPPP. This shows that the introduction of uncertainty into the reasoning process 
drastically increases the complexity of bribery problems in some instances.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Sports competitions are common forms of entertainment and recreation around the world. In most sports 
contests both observers and players have some notion of which competitors are favored over others. Many 
individuals, including some players, wager vast sums of money on the outcomes of particular games and 
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tournaments. A quick Google search reveals dozens of players, coaches, referees, and judges convicted of 
manipulating the outcome of sports competitions through match fixing, point shaving, and outright cheating. 
Additionally many websites (such as www.kenpom.com) produce and publish in-depth statistics for overall 
team win/loss predications, predictions for individual player stats on a per game basis, and real-time win 
probability graphs (which dynamically update their prediction based on in-game events). It is a world of 
probabilities and manipulation.

We use sports tournaments as a motivating example of domains in which bribery [14] and manipulation 
by coalitions [10] can undermine the integrity of competition. Using tournaments to select alternatives 
has received attention (and use) in a variety of fields including AI [52,56], economics [42], and operations 
research [50]. Tournaments and single winner elections, when the set of candidates and the set of voters 
are equivalent, are used in many domains including self-organization of ad hoc wireless sensor networks, 
where leaders are elected to delegate work or act as central routing nodes [46], and web ranking, where page 
rankings are sometimes determined by links from the set of pages under consideration [8]. In addition to 
these important applications of tournaments, there has been recent empirical research in political science 
and sociology revealing that, in the United States, voter preferences in political elections can be significantly 
affected by apparently irrelevant events, such as sports tournaments [25]. Our research sheds light on the 
security of tournaments to outside influence. We show that some forms of manipulation are easy and, thus, 
warn against using these methods for social choice without additional precautions.

The problems we consider are of an abstract nature. We define a general model of sports tournaments 
where we assume that we can pay an opposing team to not compete to the best of its ability. We provide a 
parameter to fine tune the fidelity of the model. While it may be difficult or impossible to exactly quantify the 
impact that say, paying a team’s best player to play suboptimally, would have on the outcome probabilities 
of the match, there are estimations of such impacts available (e.g. http :/ /predictionmachine .com/). Our 
tournament manipulation and bribery problems have a similar feel to the coalition manipulation and bribery 
problems often studied in social choice and voting [9,10,14]. However, as we will discuss, there are key 
differences that do not allow many of these results to transfer in a straightforward way.

In this paper we study general sports tournaments consisting of a series of rounds, where each round 
consists of a set of matches determined by the outcomes of the matches in previous rounds. Throughout 
the paper we will use “tournament” in its canonical sense as a sports or matchup competition and not in 
its strict mathematical sense as a complete directed graph [31]. We will use the equivalent and correct term 
complete majority relation when referring to the mathematical object known as a tournament. We consider 
several special types of sports tournaments.

General tournament: A tournament consists of a series of rounds, each round consisting of a set of matches 
between pairs of entrants. Which matches occur in the ith round depends on the number n of entrants 
and the outcomes of the matches in the preceding rounds. The winner (or set of winners) is determined 
by a function of the outcomes of all the rounds. Note that the outcomes of the individual matches are 
determined probabilistically, whereas once these outcomes have been determined, the winners of the 
tournament are found deterministically.

Bounded tournament: A tournament where the number of rounds is bounded from above by a constant.
Bounded history tournament: A tournament where the set of matches played in the current round depends 

only on the outcomes of the previous b rounds instead of all previous rounds, for some constant b.
Cup tournament: A single-elimination competition (or knockout tournament [51]) over a complete binary 

tree where each entrant3 plays a sequence of matches head-to-head; the winner is the entrant that is 
left undefeated. The United States’ men’s and women’s NCAA (college) Basketball Tournaments and 
most tennis majors fall into this category.

3 We use the term entrant in this paper because we can imagine a tournament made up of individuals or teams.

http://www.kenpom.com
http://predictionmachine.com/
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Fig. 1. Example of (1) a challenge tournament and (2) a cup tournament. The winner is the entrant who reaches the top node.

Round robin tournament: A competition where each entrant competes against every other entrant and 
earns a point for each victory; a winner is an entrant with the most points. The group play round of 
the FIFA World Cup falls into this category.

Challenge or caterpillar tournament: A series of matches where the winner of each match plays the next 
entrant in increasing order of rank; the winner is the entrant who wins the final match. Boxing titles 
and some PBA bowling competitions use this type of tournament. This is a special case of a bounded 
tournament.

Fig. 1 illustrates the difference between cup and challenge tournaments. In tournaments and sporting 
events there are several natural questions which arise, such as: “What are the odds my preferred entrant 
wins?” and “Does my preferred entrant have a chance of winning?”

In the next section we provide an overview of the literature in computational social choice and other 
settings that study tournaments. In Section 3.1 we formally describe our model of reasoning about bribery 
in tournaments where entrants have probabilities of winning and losing. Section 3.2 formally states the six 
decision problems we study in this domain for various tournament types. Section 4 details our complexity 
results and ends with a few observations about the change in reasoning complexity when models move from 
deterministic tournaments.

2. Related work

From the Gibbard–Satterthwaite Theorem we know that every reasonable voting rule can be manipulated 
[20,44]. The key insight of using computational complexity comes from a series of papers by Bartholdi et 
al. which have helped to spark a vast amount of research in the computational social choice field [6,7]. The 
idea of manipulation in voting schemes has been extensively studied in the deterministic case [15,17,58], un-
der uncertain or incomplete information models [12,23,57], and in empirical experiments [32–34,36,41,54,55].

Conitzer et al. studied several manipulation problems for voting in stochastic settings, however, many of 
their NP-completeness results are not immediately transferable to our setting as the reductions require the 
ability to change the preference relation without adding candidates (entrants) [9,10]. There are also results 
related to manipulation under deterministic information for cup [10] and Copeland elections [16]. Hazon et 
al. studied the complexity of manipulating elections under an information model that includes probabilities 
over orderings [22,23]. They prove that it is PP-hard to evaluate the winner of a Copeland election with 
their model. This result does not immediately transfer to our proposed settings as we have probabilities over 
pairwise match-ups, which may lead to non-transitive orderings, instead of a distribution over linear orders. 
Likewise, the bribery problem for elections, introduced by Faliszewski et al. [14], has been well studied for 
voting rules under deterministic information. Again, many of these results do not transfer; the hardness 
reductions require the ability to introduce an unrestricted number of non-candidate voters, or our particular 
modeling choices of pairwise probabilities preclude direct transfer.

There has been significant work on the schedule control problem for cup or knockout tournaments. In the 
deterministic case Lang et al. investigate the problem of setting an agenda for a sequential majority vote 
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(identical to scheduling match-ups in a caterpillar tournament) such that a particular outcome wins [30]. Vu 
et al. initiated the investigation of the question of setting the schedule, subject to various sets of constraints 
on fairness and interesting-ness, often finding the problems computationally hard [51–53]. Williams found 
that, for certain dominant entrants in a cup tournament it is easy to find a schedule such that a particular 
entrant will win [56]. In a series of papers, Stanton and Williams have also shown that, for deterministic 
tournaments where the relation between players is generated from a known random prior, it is computation-
ally easy to find a knockout tournament such that a preferred candidate will win [47–49]. In the uncertain 
information case, Hazon et al. [24] find that the problem of setting an agenda that maximizes a particular 
candidate’s probability of winning is NP-hard. However, for cup tournaments with a known, fixed complete 
majority relation, the problem of finding a schedule such that a preferred entrant will win was recently 
shown to be NP-hard by Aziz et al. [3]. An important implication of this result for us is that there is no 
FPRAS for counting the number of tournaments in which a particular player wins. This count could be 
used as a proxy for player strength in a probabilistic setting.

Russell and Walsh find that the coalitional manipulation in sports tournaments is often computationally 
easy [43]. In Russell and Walsh’s model, entrants may be a part of a coalition of manipulators that can 
choose to lose their matches. There is also an extensive body of work on the elimination problem for sports 
tournaments. In the elimination problem, the probability that team i beats team j is known, and the 
problem is to find the probability that a team is eliminated given a fixed sports season or playoff schedule 
[21,27]. Altman et al. [2] looked at a deterministic information variant of our problem where certain teams 
in a coalition could throw games in a sports competition and classified certain tournament choice rules as 
pairwise non-manipulable; where no pair of entrants could obtain a better outcome.

There has been surprisingly little work on stochastic models of tournaments, though there has been 
interest in stochastic models for voting rules. Perhaps the closest notion is that of a possible winner — 
a notion intrinsic to reasoning under uncertainty introduced by Konczak and Lang [28], with further studies 
by Lang et al. [29]. Recent studies of the complexity of computing possible winners include those by Lang 
et al. [30], Bachrach et al. [5], Conitzer et al. [11] and Xia et al. [57]. Possible and necessary winners have 
also been studied in the case of partial tournaments, where some matches are already decided [4]. These 
papers address complexity questions for voting rules when voters are defined by their (possibly incomplete) 
preference profiles over a set of outcomes. While these models are similar in spirit to the one under study, 
none of them consider pairwise probabilities for tournaments.

3. Definitions

In this section we provide the details of our problems. We precisely define the parameters of tournaments 
and the model that defines our decision problem. We also include a brief overview of the computational 
complexity classes that we will encounter in the next section. Our definition of a tournament is different 
from that of mathematics and economics; we use tournament as it is understood in modern sports and 
competitions. In mathematics, a tournament is a complete, directed graph [38] that can be realized from 
a set of votes [37], sometimes referred to as a majority relation [31]. While these definitions are similar to 
ours, the problems we want to capture are not explicitly representable with the current models (both in 
economics and in mathematics) and we therefore begin with the definition of our model.

3.1. Model definition

We begin by defining a model with which to reason about sports tournaments and other head-to-head 
competitions.

Consider a tournament with n entrants {e1, . . . , en}. Note that what distinguishes a tournament from a 
general voting rule here is that, for a given election with separate sets of candidates and voters, we require the 
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set of candidates to be exactly the set of voters. Let Qn×n
[0,1] be the set of n ×n matrices over [0, 1] ∩Q (the ra-

tional numbers in the interval [0, 1]). Let pi,j denote the probability that entrant ei will defeat entrant ej . Let

P = [pi,j ] ∈ Qn×n
[0,1] .

We require that pi,j + pj,i = 1. We choose k ∈ N to discretize the interval [0, 1] into steps of 1/(k+1), we call 
this the discretization level of the problem. That is, each

pi,j ∈ {0, 1} ∪ {1/(k+1), 2/(k+1), . . . , k/(k+1)} for i, j ∈ {1, . . . , n}.

Taking k = 0 gives us the deterministic case where each match is either won or lost with certainty. As an 
input to a computational problem we assume k is given in unary.

We define the discrete price table, CP , to have n2−n rows (indexed by pairs i, j, i �= j) and k+2 columns. 
For each entry in the table we have a positive integer value representing the cost to lower pi,j to a given 
probability (by bribing ei). CP gives the cost of bribing each match in per match bribery, and gives the cost 
of bribing an entrant in per entrant pair bribery. We assume that all entrants will compete to the best of 
their abilities and we cannot increase an entrant’s probability of winning a particular match other than by 
bribing their opponent. Therefore we designate these entries as –. We also require that ci,j(pi,j) = 0. That is, 
it does not cost anything to have an entrant compete at its highest level. We assume bribery is non-adaptive, 
carried out before the first match is played. Outside actors may not have access to the entrants after the 
start of the competition (i.e., the tournament is taking place in a remote or tightly controlled location) so 
all bribery must be done beforehand.

In general we are given a rule f for determining which matches will be played in a given round. The 
value of f may depend on the results of matches played in previous rounds, but does not depend on the 
probability matrix P nor on the cost matrix CP . We are also given a rule g for determining the winners of 
the tournament, depending on the results of all matches played, but not on the probability matrix or the 
cost matrix. Let Pr [ei|P, f, g] denote the probability that ei wins the tournament defined by rules f and g
and probability matrix P . For cup and challenge tournaments the rule f may be represented by a binary tree 
T with entrants labeled on the leaves to represent the order of the matches. In this case we write Pr[ei|P, T ]
for Pr [ei|P, f, g]. In some problems we are also given a threshold t, an integer-valued budget B or a set M
of manipulating entrants. Consider Example 3.1 which will serve as a running example through the text.

Example 3.1. Consider the following example with k = 3 (so there are k + 2 = 5 possible probability 
configurations) and n = 4 entrants. We use this as a running example. These parameters for k and n are 
given implicitly by the probability matrix P and cost matrix CP .

P =

e1 e2 e3 e4
e1 – 0.75 0.50 0.25
e2 0.25 – 0.25 0.25
e3 0.50 0.75 – 0.25
e4 0.75 0.75 0.75 –

CP =

ci,j 0.00 0.25 0.50 0.75 1.00
c1,2 100 40 20 0 –
c1,3 30 25 0 – –
c1,4 200 0 – – –
c2,1 10 0 – – –
c2,3 10 0 – – –
c2,4 10 0 – – –
c3,1 120 75 0 – –
c3,2 200 100 50 0 –
c3,4 300 0 – – –
c4,1 300 200 100 0 –
c4,2 300 200 100 0 –
c4,3 400 300 200 0 –
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We next define several types of tournaments. In each case we assume that no match ends in a tie and we 
have a unique winner for every match. In the deterministic case a scoring model which includes ties or does 
not normalize to certain forms for round robin tournaments and Copeland elections can have significant 
effects on the complexity of evaluation, manipulation, and bribery [16,27].

We begin by defining a general model for tournaments. Let P(U) denote the power set of a set U . If S is 
a subset of the set of pairs of entrants, an outcome for S is a specification of a winner for each match in S. 
We can formalize this as follows. If S = {(i1, j1), . . . , (ik, jk)} is a set of matches, an outcome for S is a set 
{(i1, j1, t1), . . . , (ik, jk, tk)} where each tm ∈ {im, jm}. An outcome is possible if it has positive probability 
according to probability matrix P . We denote by Ω(S) the set of outcomes of S, and by Ωp(S) the set of 
possible outcomes of S. Let D = ∪SΩ(S) be the set of outcomes of all sets of matches.

General tournament (GT): A general tournament on n entrants consists of
• an integer n > 0 giving the number of entrants (where convenient we denote the entrants by 

e1, . . . , en);
• a number r of rounds;
• a matrix P = [pi,j ] of probabilities of winning pairwise events;
• a discrete price matrix CP ;
• a partial function f : {(n, d1, . . . , di−1) : n ∈ Z+, dj ∈ D} → P(Wn) (the next round function), 

where Wn = {(i, j) : 1 ≤ i < j ≤ n}; and
• a partial function g : {(n, d1, . . . , dr) : n ∈ Z+, dj ∈ D} → P({1, . . . , n}) (the result function).
The value of f is the set of matches to be played at round i given the outcomes of the matches in all 
previous rounds. It is a partial function because not all matches can occur at every round. The domain Δ
of f is defined as follows. First, Z+ ⊆ Δ. Suppose (n, d1, . . . , di−1) ∈ Δ and di ∈ Ω(f(n, d1, . . . , di−1)). 
If i < r, then (n, d1, . . . , di−1, di) ∈ Δ. If i = r, then (n, d1, . . . , di−1, di) is in the domain of g. The 
value of g is the set of winners. Note that f and g do not depend on the probability matrix P and the 
cost matrix CP .

Strictly speaking, we do not need the parameter n for a single tournament. However, we want to think 
more broadly about a class of tournaments. This is an infinite family Y of tournaments parametrized in 
part by a subset N of the natural numbers. For each integer n ∈ N we have a set of tournaments with n
entrants. For a fixed n, individual tournaments are determined by the probability matrix P and the cost 
matrix CP . All tournaments in the family Y have a common next round function and a common result 
function, with n as a parameter. These functions must be polynomial time computable in n and the length 
of the remaining input parameters. The number of rounds must be bounded by a polynomial in n.

In some tournaments each pair of participants can meet in at most one match. We call such a tournament 
unitary. Challenge tournaments, cup tournaments, and round robin tournaments are unitary, but there do 
exist non-unitary tournaments in the sports world (e.g., the NCAA’s (college) US college baseball world 
series is a double elimination tournament).

Bribery can be done in several ways. Bribery is adaptive if the bribes in one round can depend on the 
outcomes of the preceding rounds. Otherwise it is nonadaptive. In this paper we always assume bribery is 
nonadaptive.

There is a question as to the effect of a bribe when two participants are involved in two or more matches. 
One can consider either per match bribery, in which a bribe affects only a single match, and per entrant pair 
bribery, in which a bribe affects all matches between a pair of entrants. Note that in unitary tournaments, 
per match and per entrant pair bribery models coincide.

We consider the following classes of tournaments in this paper.
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Bounded tournaments: We say that a class Y of tournaments is bounded if the number of rounds r is 
bounded by a polynomial in n, the cardinality of f(n, d1, . . . , di−1) is bounded by a constant b for every 
(n, d1, . . . , di−1) in the domain of f or g, and the discretization level k is given in unary (so the input 
size is Θ(n2k)).

Bounded history tournaments: We say that a class Y of tournaments has bounded history b ≤ r if the 
functions f and g depend only on the round number and the outcomes of the most recent b rounds 
where b is a constant. In this case we write

f(n, d1, . . . , di−1) = f(i;n, di−b, di−b+1, . . . , di−1)

if i ≥ b + 1 and

f(n, d1, . . . , di−1) = f(i;n, d1, d2, . . . , di−1)

otherwise. The point here is that the set of matches to be played in round i depends only on the outcomes 
of the most recent min(b, i − 1) rounds rather than on all previous rounds. Similarly g(n, d1, . . . , dr) =
g(n, dr−b+1, . . . , dr).

Challenge tournament (CT): In a challenge tournament n −1 matches are played. In the first match, e1 plays 
e2. In the second match, the winner plays e3, and so on. The winner of the last match is the unique 
winner of the tournament. Thus CT is a bounded class of unitary tournaments with bounded history 
equal to one and with n − 1 rounds.

Cup tournament (Cup): In a cup tournament we are given a complete binary tree T with entrants labeled 
on the leaves. The number n of entrants must be a power of 2.4 Each internal node is decided by the 
competition between the two entrants on the level below. The unique winner is the entrant who reaches 
the top node of the tree. Cup tournaments are unitary, have bounded history one, and have log(n)
rounds.

Round robin tournament (RR): In a round robin tournament (Copeland Scoring) each entrant plays every 
other entrant exactly once. In each match each entrant receives 1 point for a win and 0 points for a 
loss. A winner of the tournament is an entrant with the maximum number of points (there may be 
more than one winner of the tournament). An RR tournament is a single round unitary tournament, 
and, thus, has bounded history.

The World Cup of Soccer is an example of a tournament that fits the model of a general tournament but 
not of CT, Cup, or RR. There are two phases. First, four groups of four teams each plays a round robin 
tournament. This is round 1 of a GT. Then the two highest scoring teams from each four-team RR play an 
eight-team Cup tournament, the winner of which is the overall winner. This accounts for rounds 2, 3, and 
4 of a GT. The GT has history 2. Who plays in round 4 depends only on who wins in round 3 (history 1). 
Who plays in round 3, however, depends on who wins in rounds 1 and 2 since the positions of the entrants 
in the Cup tree depend on the numbers of games won in the RR phase.

Also note that with a slight generalization of a GT we can model an entire NBA (American basketball) 
season. The generalization is to allow two entrants to play more than one match in a round. This can be 
modeled by allowing the value of the next round function f to be a multiset. Now a season, including 
playoffs, consists of a first round consisting of 82 matches per team (a sort of multi-RR) from which 16 
teams advance to a sort of hybrid Cup/best of seven tournament. Each of eight pairs of teams plays a best 
of seven series (each modeled by seven rounds of a GT), the winners advancing to another best of seven 
series. Which teams play in the second best of seven series depends on performances in the “regular season”, 

4 If not, we can add sufficiently many “fake” players who lose deterministically to all “real” players, so that the number is a 
power of 2.
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so the GT has history eight. (Which teams play in third and fourth best of seven series only depends on 
who won the previous ones.)

3.2. Probabilistic tournament bribery problems

With this model we can now define our problem and a set of related decision problems for a class Y of 
tournaments specified by a number of rounds r, a next round function f , and result function g.

Given: A natural number n, a probability matrix P ∈ Qn×n
[0,1] describing the behavior of a tournament of 

class Y, a preferred entrant e∗, and (where appropriate) a cost matrix CP , a threshold t, a budget B, 
or a set of manipulators M ⊆ {e1, . . . , en}.

Questions: We define the following 6 decision problems with the above input:

Evaluation: Is the probability that e∗ wins the tournament (the sum of the probabilities of the futures 
with e∗ a winner) above t?

Pos-Win: Is e∗’s probability of winning the tournament above 0?
Pos-Win-$: Can we raise e∗’s probability of winning the tournament above 0 by bribing specific entrants 

according to CP and not exceeding the budget B?
Constructive coalitional manipulation (CCM): Can we raise e∗’s probability of winning the tournament 

above t by strategically setting all the probabilities associated with a subset M (a coalition) of the 
entrants?

Constructive bribery: Can we raise e∗’s probability of winning the tournament above t by bribing 
specific entrants according to CP and not exceeding the budget B?

Exact: Can we raise e∗’s probability of winning the tournament above t by bribing specific entrants 
according to CP and spending exactly B?

We note that in the evaluation, pos-win, and CCM problems the bribery table CP can be omitted from 
the specification of the problem.

Example 3.2. Recall our running example matrices, shown in Example 3.1.

P =

e1 e2 e3 e4
e1 – 0.75 0.50 0.25
e2 0.25 – 0.25 0.25
e3 0.50 0.75 – 0.25
e4 0.75 0.75 0.75 –

CP =

ci,j 0.00 0.25 0.50 0.75 1.00
c1,2 100 40 20 0 –
c1,3 30 25 0 – –
c1,4 200 0 – – –
c2,1 10 0 – – –
c2,3 10 0 – – –
c2,4 10 0 – – –
c3,1 120 75 0 – –
c3,2 200 100 50 0 –
c3,4 300 0 – – –
c4,1 300 200 100 0 –
c4,2 300 200 100 0 –
c4,3 400 300 200 0 –

Consider a challenge tournament with the entrants ordered on T as illustrated in Fig. 2. For this graph 
we can evaluate the six questions presented in above. We assume that e∗ = e1 and we enumerate the other 
necessary parameters for the questions that require them.
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Fig. 2. Tournament graph (T ) for Example 3.2.

Evaluation: For the decision problem we require a threshold; here we take t = 0.08. For a challenge tour-
nament with e∗ in the first position, computing the exact probability of winning is Pr [e1|P, T ] =
p1,2 × p1,3 × p1,4 = 0.75 × 0.5 × 0.25 = 0.09375. Since this is greater than t this example is a “yes” 
instance.

Pos-Win: For the decision problem for pos-win we only need to examine the result of the evaluation proce-
dure. Since Pr [e1|P, T ] > 0 then this example is a “yes” instance.

Pos-Win-$: For our running example Pr[e1|P, T ] > 0 without requiring any bribes and therefore is also a 
“yes” instance for pos-win-$.

Constructive coalitional manipulation (CCM): For this question let M = {e4} and t = 0.15. Since we are 
trying to raise Pr [e1|P, T ] > 0.15 the best thing to do is to set p4,1 = 0. This way the manipulator, e4, 
loses to the preferred entrant with certainty. We can then evaluate Pr [e1|P, T ] = p1,2 × p1,3 × p1,4 =
0.75 × 0.5 × 1.0 = 0.375. Since Pr [e1|P, T ] > 0.15, this is a “yes” instance.

Constructive bribery: For this question let t = 0.15 and B = 100. By investigation we see there are only 
two meaningful options for bribes. We can bribe e4 so that p1,4 = 0.5 or we can bribe e2 and e3 so 
that p1,2 = 1.0 and p1,3 = 0.75. Using the evaluation formula again we see that with the first option of 
bribes we have Pr [e1|P, T ] = p1,2 × p1,3 × p1,4 = 0.75 × 0.50 × 0.50 = 0.1875 with the second option of 
bribes we have Pr [e1|P, T ] = p1,2 × p1,3 × p1,4 = 1.0 × 0.75 × 0.25 = 0.1875. Both of these options give 
us the same value for Pr [e1|P, T ] and, since both options are > 0.15, this is a “yes” instance.

Exact: For this question let t = 0.15 and B = 100. By investigation we see there are only two meaningful 
options for bribes and only one option that exactly spends our budget. Therefore, we bribe e4 so 
that p1,4 = 0.5. Using the evaluation formula again we see that Pr [e1|P, T ] = p1,2 × p1,3 × p1,4 =
0.75 × 0.5 × 0.50 = 0.1875. Since Pr [e1|P, T ] > 0.15 and we have exactly spent our budget, this is a 
“yes” instance.

3.3. Complexity classes

Our goal in this paper is to classify the various problems related to bribery and probabilistic behavior 
of tournaments according to their computational complexity. As is the practice in complexity theory, we do 
so by locating these problems as precisely as possible in complexity classes. In this section we review the 
definitions of these classes. For a more complete treatment we refer the reader to [40].

P: A decision problem L is in the class P if it is decidable in polynomial time by a Turing machine.
NP: A decision problem L is in the class NP if it is decidable in polynomial time by a nondeterministic 

Turing machine.
PP: A decision problem L is in the class PP if there is a nondeterministic polynomial time Turing machine 

that on input x accepts in at least half the computation paths if x ∈ L and accepts in fewer than half 
the computation paths if x �∈ L.

PL: A decision problem L is in the class PL if there is a nondeterministic log space Turing machine that 
on input x accepts in at least half the computation paths if x ∈ L and accepts in fewer than half the 
computation paths if x �∈ L.

Oracle classes: Let X be a class of decision problems with a notion of adding a language L as an oracle for 
machines that recognize X. For example, if the class X is defined to be the class of problems decided 
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Table 1
Complexity results for probabilistic tournament bribery problems. In some cases we have been unable to provide lower bounds, in 
these cases we note our upper bound results (∈).

Challenge Cup Round robin
Evaluation PL (Corollary 4.4) P (Theorem 4.18) ∈ PP (Theorem 4.1)
Pos-Win PL (Corollary 4.6) P (Theorem 4.19) P (Corollary 4.25)
Pos-Win-$ P (Corollary 4.8) P (Theorem 4.20) P (Theorem 4.24)
CCM P (Corollary 4.10) ∈ NP (Theorem 4.21) ∈ NPPP (Theorem 4.10)
Cons. bribery ∈ NP (Corollary 4.4) ∈ NP (Theorem 4.21) ∈ NPPP (Theorem 4.27)
Exact NP-C (Theorem 4.12) NP-C (Theorem 4.22) ∈ NPPP (Theorem 4.10)

by Turing machines with some particular constraints, then an oracle L can be added by allowing the 
Turing machines to make “black box” queries about membership of strings in L. If Y is a complexity 
class, then the class XY is the class of problems recognized by such oracle X-machines using an oracle 
L ∈ Y . If the number of oracle queries is bounded by t, then the resulting class is denoted XY [t]. The 
reader will encounter NPPP and NPPP[1] in this paper.

Completeness: If X is a class of decision problems, and L ∈ X, then L is complete for X if every problem in 
X polynomial time5 mapping reduces to L. The class of languages that are complete for X is denoted 
X-C. A statement that a language is complete for a class is a statement that we have identified the 
complexity of the problem as tightly as possible. Thus,

PL ⊆ P ⊆ NP ⊆ PP ⊆ NPPP.

4. Complexity results

We proceed through the results in order of tournament type. This allows us to present the results in a 
coherent fashion as, in many cases, the proofs and algorithms build on one another. Table 1 provides an 
overview of our complexity results on tournaments.

4.1. General tournaments

In this section we give complexity results that apply to all classes of tournaments.

Theorem 4.1. Let Y be any class of general tournaments such that the number of rounds r is bounded by a 
polynomial in n. Then evaluation for Y is in PP.

Proof. Suppose we’re given an evaluation problem with probabilities expressed with precision k. Each 
probability pi,j can be written as ni,j/k, where ni,j is an integer. Let t be the given threshold for e∗’s 
winning probability.

We create a nondeterministic polynomial time algorithm, M , as follows. M simulates a tournament with 
n entrants and r rounds.

• For each l, 1 ≤ l ≤ r, suppose we have determined outcomes d1, . . . , dl−1 so that (n, d1, . . . , dl−1) ∈ Δ. 
For each (i, j) ∈ f(n, d1, . . . , dl−1), guess n ∈ {0, 1, . . . , k− 1}. If n < ni,j then i wins, otherwise j wins. 
This determines an outcome di for f(n, d1, . . . , dl−1).

• At the end of the computation, if e∗ ∈ g(n, d1, . . . , dr), accept; otherwise, reject.

5 It is possible to consider other resource bounds, but here we only consider polynomial time.
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Let m be the number of computation paths, which we can compute as follows. At each step we have a 
k-way branch, so m = kr. Therefore, |m| = r log(k), which is polynomial in n and the length of k. Thus, 
m is computable in log(r) multiplications of integers whose length is bounded by a polynomial of the input 
size. By a standard trick the threshold tm can be replaced by 1/2 [45, p. 92ff].

Participant e∗ wins the tournament if and only if e∗ wins in ≥ tm of the paths. Therefore, if Y is any 
class of general tournaments such that the number of rounds r is bounded by a polynomial in n, evaluation 
for Y is in PP. �

The upper bound on the complexity of evaluation given in Theorem 4.1 can be extended immediately to 
the Constructive Bribery, CCM, and Exact Bribery problems as well.

Theorem 4.2. Let Y be any class of general tournaments such that the number of rounds r is bounded 
by a polynomial in n. Suppose we use either per match bribery or per entrant pair bribery. Then CCM, 
Constructive Bribery, and Exact Bribery for Y are in NPPP.

Proof. We can construct an NPPP machine that, given a tournament T and threshold t, nondeterministically 
guesses a set of bribes, checks that the bribes total at most the budget, and evaluates T with a single call 
to a PP oracle. Since the number of rounds is polynomially bounded, a set of bribes can be guessed in 
polynomial time. We accept if the probability of e∗ winning is > t. �

Note that we have actually shown these problems are in NPPP[1].

4.2. Bounded tournaments and challenge tournaments

In this section we consider tournaments with various bounds on their parameters.

Theorem 4.3. Suppose Y is a class of bounded tournaments with bounded history. If f and g are log space 
computable, then evaluation for Y is in PL.

Proof. The same proof as in Theorem 4.1 works with the observation that under the given hypotheses the 
space complexity is logarithmically bounded. �

In fact the same result holds if we let the length of the history be O(log(n)).

Corollary 4.4. Evaluation for CT is in PL.

Now that we have determined that it is computationally easy to evaluate the result of a given instance 
of CT, we move our attention to the possible winner problem.

Theorem 4.5. Suppose Y is a class of bounded tournaments. Pos-Win for Y is in PL.

Proof. Run the evaluation algorithm given in Theorem 4.3 with t = 0. Note that e∗ is a possible winner if 
and only if Pr [e∗|P, f, g] > 0. �
Corollary 4.6. Pos-Win for CT is in PL.

Theorem 4.7. Suppose Y is a class of bounded tournaments with bounded history. Then Pos-Win-$ for Y 
using per match bribery is in P.
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Proof. Let b be a common bound on the history and the number of matches in each round. We provide a 
polynomial time dynamic programming algorithm to compute the minimum cost such that e∗ has a non-zero 
probability of winning the tournament. For each round u and each b-tuple of subsets S1, . . . Sb ⊆ {(i, j) :
1 ≤ i < j ≤ n} with |Sv| ≤ b for each v, and dv a feasible outcome for Sv, we compute the minimum cost 
min$(i, S1, . . . , Sb, d1, . . . , db) needed to make positive the probability that Sv is the set of matches at round 
u − v + 1, v = 1, . . . , b with outcome dv (if u < b we must truncate the list of Svs).

Recall from our definition of general tournaments that Wn is the function of next round games. For 
S ⊆ Wn and d ∈ Ω(S), let κ(S, d) be the cost of bribery to make d ∈ Ωp(S). If no such bribery is possible, 
let κ(S, d) = B + 1. We have

min$(i, S1, . . . , Sb, d1, . . . , db) = min{min$(i− 1, S2, . . . , Sb+1, d2, . . . , db+1) + κ(S1, d1) :

Sb+1 ⊆ Wn, |Sb+1| ≤ b, db+1 ∈ Ω(Sb+1), and

S1 ∈ f(i;n, d2, . . . , db+1)}.

This recursive formula leads directly to a dynamic programming algorithm. The time complexity of the 
algorithm is the number of table entries times the cost of computing each table entry.

Note that if S ⊆ Wn with |S| ≤ b, then the number 2|S| of outcomes from matches in S is bounded. 
There are polynomially many choices for Sb+1 and for each choice there is a bounded number of db+1. So 
we are minimizing over a polynomial size set. For each Sb+1, db+1, there are polynomially many (O(kb)) 
combinations of bribes to check to see whether db+1 can be made possible. It follows that it takes polynomial 
time to update each table entry. Moreover, the number of table entries is in O(n(n2)b22b2).

Finally, if for some S1, . . . , Sb, d1, . . . , db, we have min$(r, S1, . . . , Sb, d1, . . . , db) ≤ B and e∗ ∈
g(r; n, d1, . . . , db), then accept. Otherwise reject. �

A similar idea could be tried for per entrant pair bribery, but this seems to fail. Since a bribe of a 
match at an early round affects the probability distribution of the outcome of a match with the same 
entrants in a later round, it seems that to find min$(i, S1, . . . , Sb, d1, . . . , db) we must know the updated 
probability matrix for each min$(i − 1, S2, . . . , Sb+1, d2, . . . , db+1). There may be many patterns of bribery 
that all lead to the minimal cost to make S2, . . . , Sb+1, d2, . . . , db+1 possible. In fact, the minimal cost bribe 
that makes S1, . . . , Sb, d1, . . . , db possible might not arise from extending a minimal cost bribe that makes 
S2, . . . , Sb+1, d2, . . . , db+1 possible since an earlier excessive bribe for a pair of entrants may save later bribes. 
It seems that we must keep track of all possible patterns of bribery that make each S2, . . . , Sb+1, d2, . . . , db+1
possible at round i − 1. The number of such patterns is Ω(kn2), which is super polynomial.

Corollary 4.8. Pos-Win-$ for CT is in P.

Recall that in the coalitional manipulation problem we are given a set M ⊆ E of members of the 
manipulating coalition. Observe that the coalitional manipulation problem is a special case of the bribery 
problem in our model. Specifically, in a coalitional manipulation instance, B = |M | and the cost of bribing 
members of M is also 1 (unit priced). The entrants E \M have bribery costs equal to ∞ (so they cannot 
be changed in this scenario).

Theorem 4.9. Suppose Y is a class of bounded tournaments with bounded history. Then Constructive Coali-
tional Manipulation for Y is in P.

Proof. Let b be a common bound on the history and the number of matches in each round. Since there are 
no budget-related resource bounds in this problem we can solve this problem by maximizing e∗’s probability 
of winning by setting the entries for each m ∈ M in the probability matrix P . We refer to the setting of 
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M as a strategy. In this instance, CP gives the available options of probability values for each m ∈ M even 
though there are only unit prices.

We construct a strategy round by round in reverse order. The strategy for a round amounts to setting 
probabilities for the matches at that round. The choices for setting these probabilities depend on CP , which 
participants are in M , and the initial probabilities for the matches. The effect of a strategy for a given round 
depends on the outcomes of the preceding b rounds since the set of matches at the current round depends 
on these outcomes. The algorithm can be described as follows.

Repeat for: j = r downto 1
For: each (dj−b, . . . , dj−1) with each |di| ≤ b

Sj = f(j; n, dj−b, . . . , dj−1)
For: each choice of a strategy for Sj

Evaluate the resulting r − j + 1 round tournament
Choose the strategy that maximizes the probability that e∗ wins

There are at most (k + 1)b ways to choose a strategy for Sj , there are

2b
2
(n(n−1)

2
b

)b

∈ O(2b
2
n2b2)

ways to choose (dj−b, . . . , dj−1) at round j, and there are r rounds. Thus the time complexity is O(kb2b2nb2r). 
This is polynomial in the input size since the input size is Θ(n2k), b is constant, and r is polynomial in n. �
Corollary 4.10. Constructive Coalition Manipulation for CT is in P.

Corollary 4.4 gives us membership in NP for the constructive bribery problem since we can verify a 
bribery plan in polynomial time. Theorem 4.10 shows that, for an instance of CCM, we can achieve optimal 
manipulations in polynomial time. However, our results for CCM do not extend in a straightforward manner 
to the situation of priced bribery.

The simple answer would be to apply a bang-for-the-buck greedy algorithm to iteratively choose the 
cheapest available single bribe which results in the largest change in

Pr[e∗|P,T ]/cost of bribe.

However, this will not reach an optimal solution in all cases. This can be illustrated by an example of CT. 
Consider the following example over four entrants.

Example 4.11. Assume that e∗ = e1 and the challenge tournament graph, T , is the same as shown in 
Fig. 2 (where e1 plays every match). Assume we have k = 3 and P and CP given below with B = 20. For 
simplification, we omit the bribery cost for all matches that do not contain e∗.

P = e1 e2 e3 e4
e1 – 0.25 0.25 0.25

CP =

ci,j 0.00 0.25 0.50 0.75 1.00
c2,1 13 13 13 0 –
c3,1 25 10 10 0 –
c4,1 25 10 10 0 –

We know that when e∗ is involved in every match, the winning probability is given by: Pr[e1|P, T ] =
p1,2 × p1,3 × p1,4 = 0.25 × 0.25 × 0.25 = 0.015625. We set the cheapest bribe of entrant e2 to change 
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p1,2 = 1.0 with cost 15. This would give Pr [e1|P, T ] = p1,2 × p1,3 × p1,4 = 1.0 × 0.25 × 0.25 = 0.0625, giving 
a change in probability of 0.046875 for a cost of 13 or a bang-for-the-buck ratio of 0.0036058. Looking at 
either a bribe of e3 or e4 we would change p1,3 = 0.75 with a cost of 10. This would give Pr [e1|P, T ] =
p1,2×p1,3×p1,4 = 0.25 ×0.75 ×0.25 = 0.046875, giving a change in probability of 0.03125 for a cost of 10 or 
a bang-for-the-buck ratio of 0.003125. This would mean that according to the bang-for-the-buck heuristic, 
bribing e2 is best single action.

However, looking at our budget we see that we can afford to bribe both p1,3 = p1,4 = 0.75 for a combined 
cost of 20. This would give Pr [e1|P, T ] = p1,2 × p1,3 × p1,4 = 0.25 × 0.75 × 0.75 = 0.140625. This is, by far, 
the best action and shows that a simple single action greedy algorithm would make non-optimal decisions 
in this case.

If we require our outside manipulator to spend exactly the allocated budget then we can show 
NP-completeness for challenge tournaments. Situations which require an organization to spend a budget 
exactly occur implicitly in many large organizations and governments. For resources other than money that 
could be used, such as referees in sports tournaments or canvassers in political elections, there is sometimes 
the expectation of exact allocations.

We introduce the Subset Sum Problem for our next proof. The statement of the problem is from Garey 
and Johnson’s book [19].

Name: Subset Sum

Given: A set W ∈ Z+, w1, . . . , wm, and a target S ∈ Z+.
Question: Does there exist a subset I ⊆ {1, . . . , m} such that 

∑
i∈I wi = S?

This problem was shown to be NP-complete via a transformation from Partition by Karp [26]. Using this 
problem we can exactly classify the complexity of the exact bribery problem for CT.

Theorem 4.12. Exact Bribery for CT is NP-complete.

Proof. Membership in NP is an immediate consequence of Theorem 4.4 and a guess and check algorithm.
To show NP-hardness we provide a reduction from Subset Sum. For a given Subset Sum instance we 

set up a challenge tournament with S entrants such that e∗ always wins (i.e., e∗ has a 100% chance of 
winning all matches against all entrants) and we let t = 0, B = S, and k = 0. We then create the bribery 
cost matrix CP with prices equal to the weights of w1, . . . , wm. In this situation bribery will have no effect 
and we must distribute the money exactly. We have now established a polynomial time mapping such that 
there will be an exact bribery if and only if there is a subset such that 

∑
i∈I wi = S. �

4.2.1. Challenge the champ tournaments
In order to eliminate as many complications of the tournament graph as possible, we consider the case 

of a challenge-the-champ (CTC) tournament. This is the subclass of CT in which e∗ = e1, so that e∗ is 
potentially involved in every match. We think of e∗ as taking on all challengers.

Theorem 4.13. There is a Constructive Bribery algorithm for CTC that runs in polynomial time with respect 
to B and n.

Proof. In CTC tournaments e∗ = e1 and is in the first match. Our goal is to maximize the probability that 
e∗ will win the tournament within budget through bribes to each of the other entrants in the tournament. 
The idea of this proof is to consider bribes on only a subset of the entrants. At each step we add an entrant 
x ∈ {e2, . . . , en} and show a dynamic programming update that will compute the cheapest bribe for the 
new subset of entrants until we have considered the set of all the entrants.
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For an instance of CTC let Fx be the probability that e∗ is still in the tournament after round x − 1, 
namely that e∗ has beaten entrants e2, . . . ex. Without bribery, Fx+1 = Fx · p1,x+1.

Let M [u, b] be defined to be the maximum we can make Fu using a bribery budget of b and bribes to 
entrants 1, . . . , u. We can compute M in polynomial time by dynamic programming.

Initialize M [1, b] = 1 for all b.
Let Q[x, b] be the maximum value p′1,x obtainable with bribe b to entrant x. The table Q can be computed, 

for all b < B, in time O(Bn) by table lookup using the cost matrix CP .
Let M [x +1, b] = maxd{M [x, b − d] ·Q[x +1, d]}. Note that d ranges from 0 to b ≤ B, so computing each 

entry in M takes time O(B). There are O(Bn) entries in the table M . Thus, computing the table can be 
done in time O(B2n), polynomial in B and n.

Finally, observe that the maximum probability achievable for e∗ to win the tournament, given budget B, 
is M [n, B]. �

Given that we are minimizing a sum (cost) and maximizing a product (joint probability), it seemed 
obvious that we should consider the logarithms of the probabilities, in order to reduce the problem to 
Knapsack, for which there are approximation schemes and pseudo-polynomial time algorithms. However, 
this turned out to be less than obvious: logarithms must, a priori, be truncated (unless k is a power of 2), 
and it was not clear to us that polynomially many bits of log(i/kr) would suffice to give us the correct 
answer.

The problem is in P if the budget, B, is polynomial in the size of the input (e.g., B is input in unary). 
Otherwise, the algorithm is pseudo-polynomial. We can, in fact, say something stronger about the complexity 
of Constructive Bribery for CTC.

Theorem 4.14. If the budget B is written in unary, Constructive Bribery for CTC is in PL.

In order to prove this, we use results about the complexity of Markov decision processes (MDPs). An 
MDP is a tuple M = 〈S, A, T, R〉, where S is a finite set of states,6 A is a finite set of actions, T is 
a probabilistic transition function from state-action pairs to states, and R is the reward/cost function, 
mapping from state-action pairs to real numbers. (Often, and here, we define a reward function from states 
to real numbers and a cost function from state-action pairs to real numbers; the function R encompasses 
both.) A policy for an MDP is a mapping from states to actions.

Mundhenk et al. [39] defined the policy evaluation problem for MDPs to be: Given an MDP M , horizon 
h (the number of state changes to be performed; assumed to be polynomial in |M |) and policy π, is the 
expected finite horizon value of π greater than 0? The policy existence problem for MDPs takes inputs MDP 
M and horizon h and asks if there exists a policy π for M and h with expected value greater than 0. They 
showed that these problems are in PL.

Proof. We give a logspace reduction from Constructive Bribery for CTC to the MDP policy existence 
problem.

Let T be a CTC tournament with entrants e∗ = e1, . . . , en, probability matrix P , cost matrix CP , target 
probability t, and budget B. Note that P [1, i] = p1,i is the probability that e∗ beats ei. Let k be the 
discretization parameter for P and CP .

We create an MDP M with states (S′ × D) ∪ {u, v}, where S′ = {s1, . . . , sn} and D = {0, 1, 2 . . . , B}. 
For 1 ≤ i ≤ n, M is in state 〈si, d〉 if e∗ has beaten s2, . . . , si spending d on bribes. State u represents e∗
winning the tournament, and state v represents e∗ losing the tournament. The initial state is 〈s1, 0〉.

The reward function is R(u) = B/t, R(v) = 0, and for all si, d, R(〈si, d〉) = 0. The horizon h equals n.

6 For our purposes, MDPs have finite state sets.
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There are (n − 1)(k + 1) actions a[i, j], with 1 ≤ i ≤ n − 1 and 0 ≤ j ≤ k, one for each entry in CP . 
Action a[i, j] corresponds to e∗ being in a match with ei+1, with ei+1 bribed CP [i, j]. For i < n, there is a 
cost of CP [i, j] for taking a[i, j].

If a[i, j] is taken in state 〈si, d〉 and d + CP [i, j] ≤ B, then the probability that M transitions to 
〈si+1, d + CP [i, j]〉 is the probability that e∗ beats ei, given the bribe corresponding to CP [i, j]. Other-
wise, M transitions to a sink state, v. Choosing a[i, j] in a state 〈sm, d〉 for m �= i, or for d + CP [i, j] > B, 
leaves the state unchanged.

There is also an action b. If action b is taken in state 〈sn, d〉, then the next state is u. The cost is B − d.
Note that the total cost, c, of actions is bounded by B, and equals B if state u is reached. The total cost 

of reaching u is always exactly B. The expected reward for a policy π is pB/t minus the cost B, where p is 
the probability that M reaches state u. Thus the expected reward is pB/t −B. This is positive if and only 
if p > t.

Thus, there is a policy for M with expected positive reward if and only if there is a set of bribes with 
cost ≤ B such that the probability of e∗ winning the tournament, given those bribes, is greater than t.

The reduction from Constructive Bribery for CTC to the MDP evaluation problem can be computed in 
logspace, so Constructive Bribery for CTC ∈ PL when B is written in unary. �

Theorem 4.13, with the insights listed in this section, leads us to the conjecture that Constructive Bribery 
for CTC is hard when B is written in binary. Many well known NP-hard problem like Knapsack admit 
pseudo-polynomial time dynamic programming algorithms [19]. In fact, we require a significant modification 
to the tournament input in order to achieve NP-completeness results.

4.2.2. Simplified challenge tournaments
Definition 4.15. The Simplified Challenge Tournament problem (SC) is a modification of the Challenge 
Tournament problem where probabilities are (negative) powers of 2, bribes raise probabilities by multiplying 
by powers of 2 (up to 1), the costs of bribes are represented as a list of costs for raising the winning probability 
by factors of 2, and e∗ = e1.

Consider a Simplified Challenge Tournament. For each i, 2 ≤ i ≤ n, the probability that e∗ = e1 beats 
ei is 2−qi for some natural number qi. Then the probability that e∗ wins the tournament is 2s where 
s = −

∑
iqi.

Definition 4.16. An instance of the Knapsack Problem is a set of m items, with weights w1 . . . wm and 
values v1, . . . , vm and targets W and V , such that there is a set I ⊆ {1, . . . , m} such that 

∑
i∈Iwi ≤ W and ∑

i∈Ivi ≥ V .

Theorem 4.17. Knapsack ≤P
m Constructive Bribery for SC. Hence Constructive Bribery for SC is NP-

complete.

Proof. Let K = 〈w1 . . . wm, v1 . . . , vm, W, V 〉 be an instance of Knapsack. We construct an instance of 
Constructive Bribery for SC with n = m + 1 entrants as follows.

Let k = maxi{vi} + 1. Let B = W . Let e∗ = e1. For each 2 ≤ i ≤ m + 1, let p1,i = 2−k, so a priori, the 
probability that e∗ wins is 2−mk. Let t = 2−s, where s = mk − V .

For each i, there are two costs associated with bribing ei: a cost of wi for raising the probability that e∗
beats ei to 2−k+vi , and a cost of B + 1 for raising that probability any higher. Thus, there is at most one 
affordable bribe available for each entrant.

If there is a set I such that 
∑

i∈Iwi ≤ W and 
∑

i∈Ivi ≥ V , then the cost of bribing all ei, i ∈ I, is within 
budget B = W , and the probability that e∗ wins, after bribery, is at least t = 2−s, where s = mk−

∑
i∈Ivi.
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If there is a set of bribes S that allows e∗ to win with probability at least t, that set can contain at 
most one bribe per entrant, and must bring the winning probability from 2−mk to 2−(mk−V ) or higher. This 
means that the sum of the increases over the bribed entrants must be at least V , with cost at most W , 
giving a solution to K. �
4.3. Cup rule tournaments

In the definition of Cup we assume that each instance is a complete tree. We could consider more general 
tree based tournaments but do not do so in this paper. Note that we could try to reduce tournaments 
based on general trees to Cup tournaments by adding entrants who lose to all other entrants and cannot 
be bribed. However, complexity bounds may not be preserved since the number of entrants that must be 
added may be super polynomial in the number of entrants in the given tournament.

Theorem 4.18. Evaluation for Cup is in P.7

Proof. To prove this we construct a polynomial time algorithm that computes Pr[ei|P, T ] for all entrants ei. 
We construct a table of size n ·
log2(n)� and use dynamic programming to compute for each i the probability, 
Lr,i, that entrant i advances to round r (with r = 1 being the first match ei competes in). When we get to 
the last round, our table will contain the probability that each entrant won.

Let G(r, i) be the set of entrants that ei may face in round r.
for i = 1 to n do
L1,i = 1

end for
for r = 2 to 
log2(n)� do

for i = 1 to n do
Lr+1,i = Lr,i ·

∑
x∈G(r,i) pi,x · Lr,x

end for
end for
At each stage, r, the numerators and denominators of the probabilities are in O(kr) ⊂ O(kn), having 

sizes n log(k) (where k is the discretization level). Each ei potentially competes against each ex in ex-
actly one round, so there are exactly n(n − 1) ∈ O(n2) multiplications in total. Thus the total time is in 
O(n2(n log(k))2) = O(n4 log(k)2). �

Turning again to the possible winner problem variants we see that evaluating whether an entrant has a 
chance of winning is feasible for cup tournaments as well.

Theorem 4.19. Pos-Win for Cup is in P.

Proof. Run the evaluation algorithm given in Theorem 4.18 with t = 0. �
Theorem 4.20. Pos-Win-$ for Cup is in P.

Proof. We provide a polynomial time dynamic programming algorithm to compute the minimum cost such 
that e∗ has a non-zero probability of winning the tournament. In particular, for each e we construct a 
vector Ve such that Ve(L) is the minimum cost of guaranteeing a non-zero probability that e is still in the 
tournament at level L of the game tree. The answer we want is Ve∗(log2(n)).

7 The same result with a slightly more optimized algorithm is shown in [51] and [24].
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Let the tournament graph T be a complete binary tree. Let L be a level of the binary tree starting 
with 0 at the bottom level. For each entrant ei we then create a vector, Vei , of size log2(n) with Vei(0)
initialized to 0 (the cost to get to the 0th level). Let Vei(L) be the minimum cost for ei to have a non-zero 
probability of winning its Lth contest. We construct the minimum cost matrix, min$, an integer matrix of 
size n2, as follows: min$ij = 0 if i starts with a non-zero probability to beat j and the minimum bribe cost 
min$ij = cij(1/(k+1)) otherwise.

for L = 1 to log(n) do
for all ei ∈ T do

Let G(ei, L) be the set of entrants in the sub-tree at level L containing ei.
Vei(L) = Vei(L − 1) + minx∈G(ei,L)−G(ei,L−1)(min$i,x + Vx(L − 1))

end for
end for
At the end of execution Vei(log2(n)) will contain the minimum cost to promote ei to the top level of T

with a non-zero winning probability. We can compare this cost with B and accept if Ve∗(log2 n) ≤ B, else 
reject. �

Theorem 4.18 immediately provides us with the following corollaries through standard guess and check 
algorithms.

Corollary 4.21. CCM and Constructive Bribery for Cup are in NP.

We have not found lower bounds for CCM or constructive bribery for Cup. We can prove NP-completeness 
for the exact case directly.

Theorem 4.22. Exact Bribery for Cup is NP-complete.

Proof. To show membership in NP we can nondeterministically guess a bribery scheme and check that it 
utilizes the entire budget. We can then evaluate the tournament in polynomial time by Theorem 4.18 to see 
that e∗’s winning probability exceeds the given threshold.

To show NP-hardness we can use a reduction similar to the one used in Theorem 4.12. Recall that S is 
the target sum in a Subset Sum instance. In this construction we choose a number, j, such that j2 ≥ |S|. 
We build our cup instance with j entrants. We set the added entrants’ bribery prices to be > B so that 
these entrants can be safely ignored. We then use the same mapping presented in the proof of Theorem 4.12
to show Exact Bribery is NP-complete. �
Theorem 4.23. If k = 0 (deterministic version), then Constructive Bribery for Cup is in P via a dynamic 
programming algorithm.

Proof. Let MinCost[i, r] be the minimum cost in the deterministic Cup Bribery instance for ei to win a 
match at round r. Note that MinCost[i, 0] = 0 for all i.

Let ST (i, r) be the set of non-ei entrants in ei’s subtree of height r, namely the set of entrants ei might 
play at round r. Let C(i, j) be the cost to bribe ej to lose to ei. Note that, if ei already loses to ej , the cost 
is 0. Let H = log2(n + 1) be the height of the tree, i.e., the number of rounds in the tournament.

We can compute

MinCost[i, r + 1] = minj∈ST (i,r){MinCost[j, r] + C(i, j)} + MinCost[i, r].

Thus, it takes time O(n) to compute each entry of MinCost, and there are O(n) entries needed to find 
MinCost[e∗, H], the minimum cost for e∗ to win the entire tournament. �
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4.4. Round robin tournaments

Round Robin tournaments are of particular interest in the social choice community because of their close 
correspondence to the Copeland election system. Faliszewski et al. [16] provided a comprehensive study of 
bribery and manipulation of Copeland elections under deterministic scenarios. In addition, many papers on 
sports elimination, including those by Gusfield and Martel [21] and Kerns and Paulusma [27], study sports 
round robin tournaments for particular competitions (FIFA, Major League Baseball etc.).

We conjecture that the evaluation problem for round robin tournaments is PP-hard. Hazon et al. showed 
that the problem is PP-hard for the voting system Copeland with an imperfect information model [22]. 
However, as mentioned in the related work section the result from Hazon et al. does not immediately 
transfer. Likewise Gusfield and Martel showed a similar problem of determining the probability that a team 
is eliminated from a sports competition is PP-hard [21]. Their result does not hold in our context as their 
proof requires the ability to construct arbitrary schedules.

Both variants of the possible winner problem for round robin tournaments have polynomial time algo-
rithms. While at first glance this may seem odd, it is because answering the question of possible winner does 
not require enumerating all possible outcomes of the tournament. Instead, to answer the possible winner 
problem we only need to find one configuration of the matches in which e∗ wins.

The case of possible winner with access to bribes is somewhat more complicated for round robin tour-
naments. We begin with this problem because, as we show, the possible winner problem without access to 
bribes can leverage the same algorithmic construction as the possible winner with access to bribes problem. 
Recall the Minimum Cost Feasible Flow problem [1].

Name: Minimum Cost Feasible Flow

Given: A graph G(V, E) with vertices V , edges E, source node s, and sink node t. Each e ∈ E has flow, 
capacity, and cost. An edge labeled “[x, y], c” has capacity y and requires flow of at least x with cost 
per unit c. Cost is accumulated on a per unit flow basis (i.e., if the flow on an edge is 2 and c = 3 then 
the total cost of the edge is 6).

Question: Does there exist a flow from s to t such that the flow into each node is the same as the flow out, 
all minimum edge flows are satisfied, no maximum edge flows are violated, and cost is minimal?

There is a polynomial time algorithm for this problem and its solution (when the constraints are integers) 
is integral [1].

Using minimum cost feasible flows, Russell and Walsh provided an algorithm to compute minimal con-
structive manipulations for deterministic round robin tournaments when the number of matches that e∗
can win is fixed [43]. Their algorithm did not allow for bribery (we do not bound the number of manipu-
lable matches) and assumed that the number of matches that e∗ can win is fixed. Likewise, Faliszewski et 
al. showed manipulation results for Copeland under deterministic information elections using feasible flows 
[16] and a similar construction was used by Faliszewski for the nonuniform bribery case (bribery where each 
voter may have different prices for changing their votes) [13]. While our construction is similar to theirs (and 
to an earlier constructions from Gusfield and Martel [21] and Ford and Fulkerson [18]) there are significant 
differences between the constructions. Our results are for a more flexible model, which is able to encapsulate 
bribery and manipulation, and works for even or odd numbers of entrants in the tournament.

Theorem 4.24. Pos-Win-$ for RR is in P.

Proof. We give a polynomial time reduction of an instance of Pos-Win-$ to a minimal cost feasible flow 
problem. Our reduction constructs a set of minimum cost feasible flow instances; the minimum cost bribery 
corresponds to the cost of the flow in one of the polynomially many graphs we construct. There is a 
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polynomial time algorithm for finding the solution to a minimum cost feasible flow problem [1]. We build 
this sequence of graphs so that, in each graph, if there is a way to bribe the entrants such that e∗ can be 
made a possible winner, the cost of the bribery scheme will be equal to the cost of the minimal cost flow 
in that graph. We build a graph for each possible winning score e∗ could have. There will be at most n/2
graphs built in this proof and therefore we can answer Pos-Win-$ for RR in time polynomial in the size of 
the input.

We first construct the minimum cost matrix, min$i,j , as in the proof of Theorem 4.19. We also construct 
a domination graph D, which is a complete directed graph that has the set of entrants as nodes and each 
directed edge goes from a winning entrant to a losing entrant. We construct D by placing a directed edge 
from all entrants that are more likely to win to those less likely to win. While constructing D, we set 
the deterministic outcome of all matches with deterministic bribery cost involving e∗ such that e∗ is a 
winner (maximizing its possible wins). Once we set all the nondetermined matches in favor of e∗ we let 
t = outDeg(e∗). In this instance t represents the total number of matches that e∗ can possibly win without 
making any bribes. In order for e∗ to be a possible winner, we need to bribe between 0 and n − t −1 entrants 
to lose to e∗ (as well as possibly influencing the outcomes of other matches).

For each i from 0 to n − t we construct a feasible flow graph that tells us whether e∗ can be made a 
possible winner by bribing exactly i matches involving e∗. We iterate over these graphs until we find a 
situation where e∗ is a possible winner. Intuitively, the graph selects the cheapest bribes in order to make 
e∗ a winner. Each unit of flow in the graph is thought of as a point for a winning entrant. The costs of edges 
correspond to minimum bribe costs in order to “fix” deterministic matches. We arrange the flow network 
such that, if there is a minimum cost feasible flow, then e∗ can be made a winner for cost equal to the cost 
of the flow.

We detail the construction of the graph in three groups of edges between two interior stages. Fig. 5
illustrates an example of a completely constructed graph and we proceed through a description of the 
construction illustrating a scenario with five entrants. The nodes other than the source and sink are classified 
as either left nodes or right nodes. The left nodes are those that have edges from the source. The right nodes 
are those that have edges to the sink. The left and right nodes are connected by the interior edges of the 
graph.

In order to build the graph we begin with a bipartite graph (not including the source and sink). The 
nodes on the left hand side of the graph represent all the matches in the tournament. The nodes on the 
right hand side of the graph represent all the entrants to the tournament. Each unit of flow in this graph 
can be thought of, intuitively, as a “win” flowing to a particular entrant. We begin by building a source 
node s, a sink node t, a node for each match that will be played, and a collection node for each entrant in 
the tournament. The match nodes in Fig. 3 are labeled with the numbers of the entrants participating in a 
particular match while the collector nodes are labeled with the individual entrants.

To build the edges we first set one edge from the source to each of the left nodes with capacity and flow 
of 1 as illustrated in Fig. 3. These units of flow will count how many matches a particular entrant will win. 
Since each match is potentially worth one point we have exactly one unit of flow into each match node.

The internal edges (edges from matches to entrants) are constructed depending on the prices and prob-
abilities of the individual matches. Fig. 4 illustrates the construction once all the internal edges have been 
added.

• If one entrant is sure to beat another entrant and we cannot afford any bribes with respect to these 
matches, then we build an edge [1, 1], c = 0 from the match node to the sure-to-win entrant.

• If both entrants have nonzero probabilities of winning, then we build an edge [0, 1], c = 0 to both entrant 
nodes. Since we are only attempting to find a configuration that would allow e∗ to win, this construction 
allows us to check both possible match outcomes.
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Fig. 3. We have a source, sink, match nodes for each possible match, and collector nodes for each participating entrant. We build 
edges from the source to all match nodes with 1 unit of flow.

Fig. 4. To construct the internal linkage we build edges from all match nodes to their sure-to-win entrants; we build two edges in 
cases where either entrant is a possible winner; and we encode the cost of minimum bribes to change deterministic match outcomes.

• The final case of internal edges occurs if one entrant is sure to beat another and we can possibly afford 
the bribe. In this case we build an edge [0, 1], c = 0 from the match node to the sure-to-win entrant 
and an edge [0, 1], c = min$i,j from the match node to the node of the entrant who can be made a 
possible winner if the bribe is made. This construction allows our flow network to change the outcome 
of a deterministic match with cost equal to the amount of the minimum bribe.
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Fig. 5. A complete example of a minimal cost winner determination flow network.

We then build the final set of edges from right (entrant) nodes to the sink with capacity x, which we 
change between iterations of the graph. Recall that t is the total number of wins that e∗ can achieve without 
resorting to bribery. We set x = t + i and we iterate i from 0 to n − t and build a graph as described above 
for each i. Here, x represents the most matches that e∗ can win making i bribes to entrants involved in 
matches with e∗. We find the minimum cost feasible flow for each combination of bribes that e∗ can make 
to achieve a given score. A complete graph construction is showing Fig. 5.

We check each graph in turn for i = 0, . . . , n − t and if we attain a feasible flow with cost ≤ B we accept, 
otherwise, reject.

This method is complete and will find the minimum cost bribery to give e∗ a chance to win. Assume 
that there is a cheaper flow then the one found by our network. This would mean that there existed a less 
expensive way to grant e∗ a number of wins greater than or equal to any other entrant. Since each entrant 
wins at most n matches in any particular graph and we check all n possible scores for e∗, this cannot happen. 
Therefore, this construction will find the minimal cost bribery construction.

We build at most n networks with O(n2) nodes and edges. Since the minimum cost feasible flow problem 
can be solved in polynomial time, the overall running time of our algorithm is polynomial. Therefore 
pos-win-$ for RR is in P. �

We can straightforwardly extend the proof of Theorem 4.24 to the case where we do not have access to 
our budget. In the Pos-Win problem we cannot actually bribe anyone, we just have to choose winners of 
the non-deterministic matches in a way that allows e∗ a way to win. The most direct way to show this is to 
apply the algorithm presented in Theorem 4.24 with B = 0. We can optimize this construction somewhat 
but it is sufficient to state the following corollary.

Corollary 4.25. Pos-Win for RR is in P.

Theorem 4.26. The deterministic version of RR Bribery is in P.
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Table 2
Complexity results for deterministic tournaments. The cup and round robin 
results are from Russell and Walsh [43]; the challenge results are from this 
paper.

Challenge Cup Round-robin
Evaluation P P P
CCM P P P

This is based on Russell and Walsh’s construction for CCM on RR tournaments [43]. We consider a 
min-cost max-flow network for each c from the current number of e∗’s wins up to n. To Walsh’s min-cost 
max-flow network, we add the matches with e∗ (his vw). For all edges in bribable matches, we add the 
weight equal to the cost of the bribe. The capacities for edges to e∗’s matches is [1, 1], and the capacity for 
the edge from e∗ to the sink is [c, n].

4.5. Reduction between tournament types

Theorem 4.27. Constructive Bribery for CTC ≤P
m Constructive Bribery for RR.

Proof. Suppose we are given a challenge-the-champ tournament with entrants e1, . . . , en and e∗ = e1, and 
target probability t. We assume without loss of generality that n is odd. (If not, we add one entrant who is 
guaranteed to lose to e∗ and cannot be bribed.) We also assume that n ≥ 7 so that (n − 1)/2 + 1 < n − 2.

We create a round robin tournament with entrants e1, . . . , en and new distinguished entrants x and y. 
The budget, B, is the same as for the input challenge tournament. We have some bribable edges and some 
not. In particular the matches between eis and ejs with for i, j �= 1 are deterministically set so that each ei
wins exactly half its matches of this type. Furthermore, x beats all the ei, i �= 1, and x beats y. Furthermore, 
y beats e∗, which beats x. All the ei, i �= k, beat y. The costs of bribing the losers of these matches are
B + 1. The probability that e∗ beats ei is as in the challenge tournament, as are the costs of bribing ei to 
lower that cost. The target probability is t, as in the CTC tournament.

Note that y deterministically wins 1 match; x wins n + 1 matches; ei wins n/2 + 1 matches; e∗ beats x. 
The probability that e∗ wins the maximum number of matches for the tournament is exactly the probability 
that e∗ beats all the ei. This is the same in both the challenge and round robin tournaments, as are the 
effects of bribes. �

Note that Evaluation for CT ≤P
m Evaluation for RR, since Evaluation for CT is in P.

5. Conclusions

Table 1 provides an overview of our complexity results on tournaments. Russell and Walsh [43] provided 
a thorough complexity analysis of similar problems in deterministic cases, all of which generate polynomial 
time solvable problems. Table 2 reveals that, in general, polynomial time evaluation procedures lead to 
polynomial time manipulation procedures (for deterministic systems).8

If we can compute a constructive manipulation in the deterministic case then we can determine a possible 
winner in the stochastic case. The problem of a possible winner with uncertain information is the same as 
constructive bribery in the deterministic setting with B = ∞.

In this paper we have studied the complexity of bribery and manipulation problems in sports tournaments, 
in which the actors seeking to affect the outcomes have access to only probabilities of how teams will 
perform. We don’t yet have hardness proofs for some of the problems we present here. We conjecture 

8 This is also observed in [10].
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that the problems are, in fact, complete for the classes we mention. We observe that in some cases the 
introduction of uncertainty has no effect on membership in these complexity classes while in others it 
represents a significant change in reasoning structure and complexity.
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