
Strategyproof Peer Selection: Mechanisms, Analyses, and Experiments
Haris Aziz

Data61 and UNSW
Sydney, Australia

haris.aziz@nicta.com.au

Omer Lev
University of Toronto

Toronto, Canada
omerl@cs.toronto.edu

Nicholas Mattei
Data61 and UNSW
Sydney, Australia

nicholas.mattei@nicta.com.au

Jeffrey S. Rosenschein
The Hebrew University of Jerusalem

Jerusalem, Israel
jeff@cs.huji.ac.il

Toby Walsh
Data61 and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

Abstract

We study an important crowdsourcing setting where agents
evaluate one another and, based on these evaluations, a sub-
set of agents are selected. This setting is ubiquitous when
peer review is used for distributing awards in a team, allocat-
ing funding to scientists, and selecting publications for con-
ferences. The fundamental challenge when applying crowd-
sourcing in these settings is that agents may misreport their
reviews of others to increase their chances of being se-
lected. We propose a new strategyproof (impartial) mecha-
nism called Dollar Partition that satisfies desirable axiomatic
properties. We then show, using a detailed experiment with
parameter values derived from target real world domains, that
our mechanism performs better on average, and in the worst
case, than other strategyproof mechanisms in the literature.

1 Introduction
The problem arising from using peer review to select contes-
tants has been well known for millennia: people might report
untruthful valuations of others in order to improve their own
chances of selection. The problem has been referred to as
the peer selection problem. Various techniques have been
attempted to solve it, most of which focused on reducing the
influence of other participants on the selection of winners,
for example, by using lotteries to either replace selection or
to be a heavy part of the process (Mowbray and Gollmann
2007), or by using disinterested panels to prevent the partic-
ipants of the contest from any influence at all.

Despite these measures, various settings in which each
participant is both a candidate and a voter persist, for ex-
ample, in the academic review process, various funding set-
tings (the National Science Foundation (NSF) in the US
is seeking to apply it to its funding allocation (Hazel-
rigg 2013)), and award decisions. Moreover, as the use
of crowdsourcing in the online world is growing—from
grading tasks in MOOCs to evaluating code in TopCoder
(Lakhani, Garvin, and Lonstein 2010)—the need for desir-
able peer selection mechanisms becomes more and more
important. All these settings can be captured by a simple
model: agents rate or rank one another (or some subset of
their peers), and based on these reports a specified number
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of agents are selected. This problem has received much re-
cent attention (Alon et al. 2011; Fischer and Klimm 2014;
Holzman and Moulin 2013; Kurokawa et al. 2015; Roos,
Rothe, and Scheuermann 2011). Since peer review can be
costly in terms of time and effort, each agent may be asked to
review only a subset of other agents (Kurokawa et al. 2015;
Merrifield and Saari 2009).

The main challenge in the peer selection problem is to
propose strategyproof (also called impartial) mechanisms in
which agents cannot increase their chances of being selected
by misreporting.1 Natural approaches to solve the peer se-
lection problem, such the application of a voting rule, are
not strategyproof (also called manipulable). A different ap-
proach to the selection problem is to use mechanisms sim-
ilar to the Page Rank algorithm that use Markov chains to
compute a ranking of the agents (Walsh 2014). Unfortu-
nately, these approaches are also manipulable. If a mecha-
nism is manipulable, the normative properties of the mech-
anism (that hold under the assumption that agents do not
misreport) may not hold in general. Hence, we primarily fo-
cus on strategyproof mechanisms, although we also consider
some natural manipulable mechanisms as well to provide a
“best case” comparison.

Strategyproofness can be trivially satisfied by randomly
selecting k agents or selecting the best k agents according
to one particular agent (as do dictatorship mechanisms in
social choice), but as we wish to select “quality” winners,
we want to incorporate the views of all the agents. An es-
tablished way to achieve strategyproofness is to partition the
agents into a set of clusters and then select a specified num-
ber of agents from each cluster based on the reports of agents
outside the cluster (Alon et al. 2011). We combine this parti-
tioning principle with ideas from a fair division rule to divide
a dollar (Dollar for short) (de Clippel, Moulin, and Tideman
2008), to create a novel mechanism called Dollar Partition.

Contributions: We provide a comprehensive survey and
study of existing peer selection mechanisms. We show that
iteratively using a strategyproof mechanism for k = 1 to se-
lect more than one agent is not strategyproof. We conduct
a detailed experimental comparison with previously intro-
duced strategyproof mechanisms with regard to their ability
to recover the “ground truth”. This is the first experimental

1A strict incentive to report truthfully is not possible in strate-
gyproof mechanisms, so strictly better mechanisms are impossible.



comparison of the performance of strategyproof peer selec-
tion mechanisms.

Our main contribution is a novel peer selection mech-
anism (Dollar Partition) that satisfies desirable axiomatic
properties including strategyproofness and natural mono-
tonicity properties. We prove that although Dollar Partition
relies on the Dollar mechanism to share a bonus (de Clip-
pel, Moulin, and Tideman 2008), three natural peer selec-
tion mechanisms inspired from Dollar are manipulable. Dol-
lar Partition has a number of advantages over previously in-
troduced strategyproof mechanisms including the Partition
mechanism and the Credible Subset mechanism (Kurokawa
et al. 2015). Dollar Partition returns better quality outcomes
ex post than Partition if one cluster has most of the top-
ranked candidates. In contrast to Credible Subset, Dollar
Partition never returns an empty set.

Experimentally, Dollar Partition selects more agents from
a higher grade more often, selects more agents from higher
grades in the worst case, and does so more consistently, than
any other strategyproof mechanism in the literature. In the
worst case we found that Dollar Partition provides a ≥ 17%
improvement over the agents selected by Partition. Addi-
tionally, as the proportion of reviews per agent increases,
Dollar Partition performs increasingly better than Partition,
Credible Subset, and the other Dollar adaptations.

2 Related Work
The criticism that prominent peer selection mechanisms
such as ones under consideration by American and Euro-
pean funding bodies (Merrifield and Saari 2009; Hazelrigg
2013) are not strategyproof (Naghizadeh and Liu 2013)
has underscored the need to devise mechanisms with bet-
ter incentive properties. The literature most directly relevant
to this article is a series of papers on strategyproof (im-
partial) selection initiated by Holzman and Moulin (2013)
and Alon et al. (2011). We overview these mechanisms
in Section 3. Most of the work on strategyproof peer se-
lection focuses on the setting in which agents simply ap-
prove (nominate) a subset of agents (Alon et al. 2011;
Bousquet, Norin, and Vetta 2014; Fischer and Klimm 2014;
Holzman and Moulin 2013) with the latter three restricting
attention to the setting in which exactly one agent is selected
(k = 1). Mackenzie (2015) and Berga and Gjorgjiev (2014)
focused on axiomatic aspects of peer selection. Kurokawa
et al. (2015) presented an interesting strategyproof mecha-
nism (Credible Subset) that performs well when each agent
reviews a few other agents.

The peer selection problem is also related to peer-based
grading/marking (Alfaro and Shavlovsky 2014; Joachims
and Raman 2015; Kulkarni et al. 2013; Piech et al. 2013;
Robinson 2001; Walsh 2014; Wright, Thornton, and Leyton-
Brown 2015) especially when students are graded based on
percentile scores. For peer grading, mechanisms have been
proposed that make a student’s grade slightly dependent on
the student’s grading accuracy (see e.g., Walsh (2014) and
Merrifield and Saari (2009)). However such mechanisms are
not strategyproof since one may alter one’s reviews to obtain
a better personal grade.

3 Setup and Survey of Existing Mechanisms
We have a set N of agents {1, . . . , n}. Each agent reports
a valuation over the other agents. These messages could be
cardinal valuations vi(j) for agent i’s valuations of agent j,
or they could be a weak order reported by agent i of agents
in N \ {i}, which may be transformed to cardinal valua-
tions using some predetermined scoring rule. An agent, de-
pending on the setting, evaluates some 0 ≤ m ≤ n − 1 of
the other agents. Based on these messages, around k agents
are selected. Some mechanisms such as Credible Subset and
Dollar Partition may not always return a size of exactly k
even if the target size is k.

The general idea of the partitioning based mechanisms is
to divide the agents into a set of clusters C = {C1, . . . C`}.
This clustering can be done using a random process or by a
predetermined order, without adding randomness to the pro-
cess. We will often abuse notation and refer to the value that
one cluster has for another cluster vCi

(Cj); the valuation of
all agents in Ci for the agents in Cj :

∑
r∈Ci,j∈Cj

vr(j).

3.1 Mechanisms
We outline some prominent peer selection mechanisms.

• Vanilla: select the k agents with highest total value based
on their reviews by other agents. Vanilla is not strate-
gyproof; unselected agents have an incentive to lower the
reported valuations of selected agents.

• Partition: divide the agents into ` clusters. and select a
preset number of agents from each cluster, typically k/`,
according to the valuations of the agents not in that clus-
ter. This class of mechanisms is a straightforward gen-
eralization of the Partition mechanism studied by Alon
et al. (2011) (and in an early version of Kurokawa et
al. (2015)) and is strategyproof.

• Credible Subset (Kurokawa et al. 2015): let T be the set
of agents who have the top k scores. Let P be the set of
agents who do not have the top k scores but will make
it to the top k if they do not contribute any score to all
other agents. With probability (k+|P |)/(k+m), Credible
Subset selects a set of k agents uniformly at random from
T ∪ P , and with probability 1 − (k + |P |)/(k + m), it
selects no one. The mechanism is strategyproof.

Some other mechanisms are tailor-made for k = 1 and for
the case where agents only approve a subset of agents: Par-
tition by Holzman and Moulin (2013); Permutation by Fis-
cher and Klimm (2014); and Slicing by Bousquet, Norin,
and Vetta (2014). We take inspiration from the Dollar mech-
anism designed to split a divisible resource (de Clippel,
Moulin, and Tideman 2008).

• Dollar: Each agent i has a value vi(j) of his estimation of
how much j should get. We assume these values are nor-
malized so that

∑
j∈N\{i} vi(j) = 1/n. Then the Dollar

share of each agent i is xi =
∑

j∈N\{i} vj(i).

3.2 Properties of Mechanisms
We consider some basic axioms of peer selection mecha-
nisms: (i) Non-imposition: for any target set W , there is



a valuation profile and a randomization seed that achieves
W ; (ii) Strategyproofness (Impartiality): agents cannot af-
fect their own selection; (iii) Monotonicity: if an agent i is
selected, then if in a modified setting in which that agent is
reinforced (score or ordinal ranking of i is improved with
respect to other agents) by some other agents and no other
agent’s value/ranking improved, then i will remain selected;
(iv) Committee Monotonicity: if W is the outcome when the
target set size is k, then the agents in W are still selected if
the target set size is k + 1. (The final two properties are in
expectation when algorithms involve randomization.)

4 Dollar Partition
Dollar Partition is formally described as Algorithm 1. The
algorithm works as follows. First, agents are partitioned such
that the difference between the sizes of any two clusters is
at most one. Each agent i ∈ N assigns a value vi(j) to
each agent j that is in a cluster other than i’s cluster and
j is among the m agents that i reviews. Agent i may directly
give a cardinal value to the agents he reviews or the cardinal
value may be obtained by a scoring function that converts the
ordinal ranking given by i to cardinal values. In either case,
the values that i gives are normalized so that agent i assigns
a total value of 1 to agents outside his own cluster. Based on
the values from agents outside the cluster, each cluster Cj

gets a normalized weight of xj , its assigned share. Based on
each share xi, each cluster gets a quota si = xi · k which
may be a non-integer number.2 If all si’s are integers that are
at most the size of the corresponding cluster, then each si is
the quota of cluster Ci, i.e., exactly si agents are selected
from cluster Ci. If not all si are integers, we take the ceiling
of each si and use this as the quota for Ci. Note that the size
of the winning set may be larger than k: |W | ≤ k + `− 1.3
As long as ` is a small integer and k is reasonably large then
|W | ≈ k.4

Note that if the partitioning into clusters and the review
allocation can be done in a deterministic manner (e.g., lex-
icographic ordering), Dollar Partition is deterministic. We
first prove that Dollar Partition is strategyproof.

Theorem 1 Dollar Partition is strategyproof.

Proof: Suppose agent i is in cluster Cj of the generated par-
tition. Agent i will be selected in W if and only if its rank
according to the v scores given by agents outside of Cj is at
least tj . Therefore agent i can either manipulate by increas-
ing tj or by increasing its score relative to other agents in Cj

given by agents outside Cj . Since agent i cannot affect the
latter, the only way it can manipulate is by increasing tj . We

2After AAAI-2016 publication, we recognized our (required)
implicit assumption that k ≤ n/`.

3In practical settings this may not be a problem, since often a
couple of more winners can be accommodated (e.g., shortlists etc.
in case of agents declining awards).

4One would think that if each cluster does not get an integer
share, then one can consider various apportionment rules, which
have been suggested in the literature in the past several centuries,
in particular in political science (Young 1994). However, applying
these rules violates the strategyproofness of the overall mechanism.

Input: (N, v, k); the algorithm is parametrized by number of
clusters 2 ≤ ` ≤ n and m, the number of reviews per agent.

Output: W ⊂ N such that |W | ≤ k + `− 1

1 Initialize W ←− ∅
2 Generate a partition {C1, . . . , C`} of N in which the differ-

ence between the sizes of any two clusters is at most 1. Let
C(i) be the cluster of agent i.

3 Each i ∈ N reviews m agents outside C(i). Ensure vi(j) = 0
for j ∈ C(i) and that

∑
j /∈C(i) vi(j) = 1 by setting the valu-

ation of agent i for agents in its cluster to 0 and normalizing.
4 xi value of a cluster Ci is defined as follows:

xi ←−
1

n
×

∑
j∈Ci,j′ /∈Ci

vj′(j).

5 Using the xi values, we compute the number of agents ti to be
chosen from each cluster Ci. We first compute each si.

si ←− xi ∗ k for each i ∈ {1, . . . , `}.

6 for each i ∈ {1, . . . , `} do
7 ti ←− min(Ceiling(si), |Ci|).
8 For each i ∈ C(i), the score of agent i is

∑
i′ /∈C(i) vi′(i).

9 Select tj agents with the highest scores from each cluster Cj

and place them in set W .
10 return W

Algorithm 1: Dollar Partition

argue that agent i cannot change tj by changing his valua-
tion vi for agents outside the cluster. Note that i contributes
a probability weight of 1/n to agents outside Cj and zero
probability weight to agents in Cj . Hence it cannot affect
the value xj of cluster Cj . As sj is derived from xj , agent i
cannot affect the number tj = min(Ceiling(sj), |Cj |). 2

Dollar Partition easily satisfies non-imposition; we show
it satisfies other key monotonicity properties.

Theorem 2 Dollar Partition is monotonic.

Proof: Let us compare the valuation profile v when i is not
reinforced and v′ when i is reinforced. The relative ranking
of i is at least as high when i is reinforced. Since any de-
crease in valuation that an agent j in C(i) receives translates
into the same increase in the valuation received by agent i,
hence the total valuation thatC(i) receives does not decrease
and hence the number of agents to be selected from C(i) is
at least as high as before. 2

Theorem 3 Dollar Partition is committee monotonic.

Proof: The only difference between running the algorithm
for different target k values is when calculating the share
vector ~s. However, if agent i in cluster Cj was selected,
that means its ranking in the cluster Cj was above tj =
min(Ceiling(si), |Cj |). When k increases, si will only in-
crease (as xi remains the same), and hence so will tj , ensur-
ing that i will be selected again. 2

Although Dollar Partition draws inspiration from Dollar
and Partition, it has key differences from these approaches.



Comparison with other Dollar Based Mechanisms: Al-
though Dollar Partition is partly based on the Dollar mech-
anism for dividing a bonus, it is more desirable than other
peer selection mechanisms based on the Dollar framework:

• Dollar Raffle computes the relative fractions of how
much of a dollar each agent should get via the Dollar
mechanism of de Clippel, Moulin, and Tideman (2008).
Using these shares as probabilities, do the following k
times: randomly select an agent according to its dollar
share probabilities until k different agents are selected.

• Dollar Partition Raffle takes the Dollar shares of the
clusters in Dollar Raffle and uses these shares to define
a probability distribution over the clusters. Until k differ-
ent agents are selected, a cluster is drawn with respect to
the Dollar probabilities over the clusters and the next best
agent (based on reviews of agents outside the cluster) is
selected. If all agents in the clusters have been selected,
then no agent is selected.

• Top Dollar selects agents with maximum Dollar shares.5

Dollar Raffle relies too much on randomization and gives
even the worst agents non-zero probability of being selected.
Dollar Raffle is strategyproof for k = 1 but not for k > 1.

Theorem 4 Dollar Raffle is not strategyproof for k > 1.

The argument for the proof is as follows. The mechanism
iterates until it chooses k different agents, which is equiv-
alent to eliminating each selected agent and re-normalizing
the dollar partitions, as once some agent is selected we ig-
nore its repeated selection. This re-normalization prevents
the mechanism from being strategyproof, as now the prob-
abilities of others matter for each agent. For example, an
agent will prefer to contribute to a very strong agent (which,
once eliminated, will make our agent’s probability increase
significantly). The proof of this theorem carries on to the
various mechanisms presented for k = 1 (e.g., (Fischer and
Klimm 2014)): simply running the algorithm several times
destroys their strategyproofness. This is true even for mech-
anisms that are strategyproof for k = 1, as long as any agent
has the power to influence the outcome (i.e., not purely ran-
dom, a dictatorship, or a combination of both).

Although Dollar Partition Raffle relies less on the “luck
of the draw”, it still has non-zero probability of selecting
the worst k agents if the same cluster (consisting of the
worst agents) is selected repeatedly. Dollar Partition Raf-
fle is equivalent to Dollar Raffle if ` = n and hence is not
strategyproof. Note that Dollar Partition Raffle is only strate-
gyproof for k < minj∈{1,...,`}(|Cj |), otherwise this mecha-
nism encounters the same problem as Dollar Raffle. Finally,
Top Dollar requires no randomization but it is highly ma-
nipulable as an agent who is not selected may get selected
by giving lower scores to the agents who are selected.
Comparison with the Partition Mechanism: Dollar Parti-
tion seems similar to the Partition mechanism but whereas
Partition is too quick to preset the number of agents to be

5When agents’ valuations are normalized, Vanilla is equivalent
to Top Dollar.

selected from each cluster, Dollar Partition relies on the
peer reviews to decide the number of agents to be selected
from each cluster. This difference allows Dollar Partition to
have more consistent performance, no matter the clustering.
Hence, in contrast to Dollar Partition, the rigidity of Parti-
tion means that it may not choose a large proportion of the
best agents even if agents have unanimous valuations.

Example 5 Consider the setting in whichN = {1, . . . , 18},
k = 6, and ` = 3. Let the clusters beC1 = {1, . . . , 6},C2 =
{7, . . . , 12}, C3 = {13, . . . , 18}. C1 puts all its weight on
C2, equally dividing its points between 7, 8, . . . , 12, with a
slight edge to 7 and 8, C2 and C3 put all the weight on
C1, dividing their points between 1, 2, 3 and 4. Now Parti-
tion will choose 1, 2, 7, 8, 13, 14 where everyone thinks that
1, 2, 3, 4, 7, 8 are the best. Dollar Partition will select exactly
that set. Moreover, if we increase the number of clusters, the
disparity between Dollar Partition and Partition only grows.

The issue with Partition is that in contrast to Dollar Par-
tition it performs poorly ex post6 if the clusters are lopsided
with some cluster containing all good agents and other clus-
ters containing low value agents. One natural fix is that we
deliberately choose a balanced partition where the weight of
a cluster is based on the ratings of vertices outside the cluster
and we want to minimize the margin of the cluster weights.
However for this and various notions of balanced partitions,
computing the most balanced partition is NP-hard. What is
even more problematic is that if we choose a balanced parti-
tion, the resulting mechanism is not strategyproof.

We point out that there are instances where Partition may
perform better than Dollar Partition even if the rankings of
the agents are unanimous. Consider a case where a highly
preferred agent is in the same group as the lowest preferred
agents, whereas other groups only contain medium preferred
agents. In that case the weight of the cluster with the highest
preferred agent will be so high that lowest ranked agents will
also be selected (this does not work for Borda utilities). The
normalization of scores entailed in Dollar Partition causes a
certain loss of information and granularity when compared
to the other mechanisms. However, even in the example in
the remark above, we notice that Dollar Partition will ensure
that when agents have highly correlated or unanimous pref-
erences, the agent(s) that are unanimously on the top will be
selected, even if some low-ranked agents are also selected.

5 Simulation Experiments
Using Python and extending code from PREFLIB (Mattei
and Walsh 2013) we have implemented the Dollar Partition,
Credible Subset, Partition, Dollar Raffle, Dollar Partition
Raffle, and Vanilla peer selection mechanisms. All the code
developed for this project is implemented as an easily instal-
lable Python package available on GitHub free and open-
source under the BSD license. We present results on the first
systematic empirical study of strategyproof selection mech-
anisms. As in all experiments based on simulations there are

6For high stake outcomes, we want a mechanism that performs
well on average and never returns an especially bad outcome.



a plethora of decisions that must be made. While the choice
of parameter and model values can have significant impacts
on the outcomes of these studies (see e.g., (Popova, Regen-
wetter, and Mattei 2013)) we have chosen an experimental
setting that we feel is both well-motivated and closely mod-
els real-world settings.

Experimental Setup: Given n agents divided into l clus-
ters with each agent performing m reviews we want to se-
lect k agents. We first generate the scoring matrix (profile)
via a two-step process using a Mallows Model to generate
the underlying ordinal evaluation (Mallows 1957). Mallows
models are parameterized by a reference order (σ) and a dis-
persion parameter (φ). Intuitively, we can think of φ as the
probability of committing ranking error by swapping neigh-
boring elements according to σ (Lu and Boutilier 2011).
Mallows models are used when each agent is assumed to
have the same reference ranking subject to noise.

Each of the algorithms takes as input a (sparse) n × n
score matrix. In most settings where peer selection is used
there is a set of scores that can be given by a reviewer.
This creates a set of equivalence classes of proposals that
are assigned the same overall score. For example, when re-
viewing papers for a conference, a reviewer may assign the
highest score to only a very small percentage of papers if
he were to see all of the papers. We suppose that agents
are able to express these equivalence classes by assigning
a set number of grades, G. To generate our input we define
two functions F and D common to all agents (this is gen-
eralizable in our testing framework) that describe the scor-
ing and distribution, respectively. For example, using Borda
scoring where F : [4, 3, 2, 1, 0] and a distribution func-
tion D : [0.2, 0.2, 0.2, 0.2, 0.2]; all agents in the top 20%
of agents receive a score of 4, the next 20% a score of 3,
and so on. The functions D and F are passed as parameters
to the profile generator, allowing flexibility in testing. For-
mally, first we generate a complete, strict relation for agent
i. Given a probability density function (PDF) D for each
grade g ∈ G,D(g) → R+ where

∑
g∈GD(g) = 1.0 and a

scoring function F for each grade g ∈ G,F (g)→ Z+.
Each agent reviews m of the n proposals and is also re-

viewed by m other agents. Since we are dealing with clus-
ters, we additionally have the constraint that each agent re-
views m agents outside his cluster. We refer to review as-
signments satisfying these constraints as balancedm-regular
assignments. We convert a complete n×n score matrix into
a sparse score matrix by drawing a balanced m-regular as-
signment with respect to a given clustering. In order to max-
imize inter-cluster comparison, we would also like that the
m agents that agent i is to review are reasonably balanced
among the clusters (not including i’s cluster) so that each
agent in each cluster Ci reviews in total |Ci|·m

`−1 agents from
each other cluster. We generate this assignment randomly
and as close to balanced as possible. Given the balanced m-
regular assignment for agent i, we remove all other candi-
dates from i’s complete score vector. Hence we are left with
a sparse, m-regular score matrix which respects a clustering
of the agents into ` clusters. The resulting score matrix re-
sembles what a conference organizer or NSF program man-

ager sees: a sparse and noisy observation of the ground truth
filtered through equivalence classes
Results for an NSF-Like Program: Using numbers from
the NSF7 we settled on a set of realistic parameters that
one may see in the real world. The “Mechanism Design”
pilot, which used the mechanism proposed by Merrifield
and Saari (2009) had 131 proposals, with each submitter
reviewing 7 other proposals. The acceptance numbers are
not broken out from the global acceptance rate for the pro-
gram. Consequently we assume an ≈20% acceptance rate,
the same as NSF as a whole and also similar to other confer-
ence and funding acceptance rates.

We use a “normal” distribution giving |D| =
[4, 7, 15, 20, 39, 20, 15, 7, 3] and a Borda scoring function
that one would expect to find in most conference review-
ing F = [8, 7, 6, 5, 4, 3, 2, 1, 0] corresponding to the grades
G = [A+, A,B+, B,C+, C,D+, D, F ]. Without loss of
generality we assume that the ground truth ordering σ is in
agent order, i.e., 1, . . . , 130. The ground truth ordering σ
gives us an indication of which agents are objectively bet-
ter than the others. However, this ground truth is filtered not
only through the noise of the individual agents (φ) but also
by the inexactness of the m-regular assignment. Given D
and k we can establish how many of the selections should
come from each grade. In a competitive setting, we want to
select those agents at the top of the ground truth ordering.

Figure 1 shows the performance of the six mechanisms
discussed on two different metrics as we vary the number of
reviews received. We fixed φ = 0.1 for this testing as set-
ting φ ∈ {0.0, 0.1, 0.25, 0.4} had no significant effect. The
graphs show the mean cumulative proportion of the agents
in each grade that are selected by each of the mechanisms
over 1000 samples. For instance, the 1.0 score received by
Vanilla for both A+ and A+|A for all settings ofmmean that
Vanilla always selects the 11 highest scoring agents in the
ground truth ranking (σ). We use cumulative selection with
respect to the ground truth ordering. This partial sum is well
defined for each set of grades and clearly shows where a par-
ticular mechanism is over- or under-performing. Each mech-
anism was allowed to select a number of proposals equal to
the number of agents returned by Dollar Partition per itera-
tion, hence the average cumulative selection is> 1.0. Whilst
Vanilla is the best in our experiment, strictly dominating all
other mechanisms, it is the only non-strategyproof mech-
anism. In practice, agents may not report truthfully with
Vanilla and so it can perform much worse. The other gen-
eralizations of Dollar are strictly dominated by Dollar Parti-
tion; our more nuanced mechanism yields a better selection.

Comparing Dollar Partition and Partition (m = {10, 15}),
both mechanisms select all of the A+ grade agents on every
iteration. Partition selects only 9/11, in the worst case, of
the A+|A, while Dollar Partition selects 10/11, an 11% im-
provement. Considering the A+|A|B+ agents, Partition only
selects 17/26, while Dollar Partition selects 20/26, a≥ 17%
performance increase. Neither mechanism ever selects an
agent with rank lower than C+; even in the worst case, both
perform better than every other strategyproof mechanism in

7http://www.nsf.gov/nsb/publications/2015/nsb201514.pdf



Figure 1: Mean cumulative percentage of each grade of agent selected by the six peer selection algorithms presented in this
paper on 1000 random iterations selecting k = 25 agents from a population of n = 130 agents providing m = 10 (top) and
m = 15 (bottom) reviews divided into l = 5 clusters with a Mallows dispersion φ = 0.1. To enable comparisons, every
mechanism selects |W | equal to that of Dollar Partition; hence the ≥ 1.0 averages as k = 25 is the denominator. Error bars
represent one standard deviation from the mean. Dollar Partition selects more agents from a higher grade more often, selects
more agents from a higher grade in the worst case, and does so more consistently, than any other strategyproof mechanism. To
highlight Partition and Dollar Partition we have cropped results where they are the same (cutting off Dollar Raffle).

our study.8 Standard deviation is also higher for Partition for
all these cases, indicating Partition is much more likely to
make mistakes and select agents from a lower grade over
agents in a higher grade. Dollar Partition performs better
than Partition in the worst case, and performs better on av-
erage. In a low information setting (i.e., m ≤ 5), Partition
does perform slightly better on average than Dollar Partition.
However, Dollar Partition shows a lower variance and better
worst case performance across all settings tom, demonstrat-
ing its robustness to lopsided clusterings.
General Results: We explored a realistic part of the large
parameter space to investigate the mechanisms. The practi-
cal upshot, after running hundreds of thousands of instances,
is that there are numerous tradeoffs that system designers
must consider, critically depending on their target domain.
In general, varying other parameters, such as k, `, D and
F did not change the ranking of mechanisms shown here.
However, increasing the number of clusters improved Dollar
Partition’s performance in comparison to Partition’s, which
may stem from the increased chance that Partition will se-
lect the bottom candidates of a given cluster instead of bet-
ter ranked candidates in a different cluster. Accordingly, as it
generally selects the top candidates, Partition’s performance
improves when scoring rules are exponential in comparison
to less extreme scoring rules, such as Borda.

Dollar Partition is much better when there is sufficient
information, in terms of the number of reviews and the
granularity of the grades, to have a chance of recovering

8It is hard to directly compare results for Credible Subset due to
the large probability of returning an empty set. This problem is not
easily overcome; removing the ability to return an empty set means
Credible Subset is no longer strategyproof. When Credible Subset
does return a set, it slightly outperforms other mechanisms.

the ground truth ordering. Settings like conferences with
n = 2000 papers and m = 5 reviews split into 5–8 grades
often have no clear cutoff between accept and reject; the
grades contain too many items. In these cases all the mech-
anisms perform poorly, as selecting a set of winners is akin
to randomly selecting agents from the set of possible win-
ners. See, e.g., the NIPS experiment9 and the recent paper
on the limits of noisy rank aggregation using data from the
KDD conference (Joachims and Raman 2015). As the ratio
of m to n grows, and the granularity of the grades increases,
it becomes possible to recover the ground truth ranking, and
Dollar Partition outperforms the other mechanisms.

6 Conclusion
We introduce a novel peer selection mechanism—Dollar
Partition. Overall, Dollar Partition’s flexibility in setting the
number of agents to be selected from each cluster addresses
the worst-case instances where partitions may be lopsided,
allowing Dollar Partition to reach higher quality, more con-
sistent results than existing mechanisms. Combined with the
ability to always return a winning set, it is an improvement
over current mechanisms.

Among strategyproof mechanisms, Partition and Dollar
Partition may have a certain ‘psychological’ advantage:
they may incentivize agents to report truthfully because an
agent’s contribution in selecting other agents (with whom
he is not competing) is more direct. Moreover, partitioning
into groups helps deal with conflict of interest cases, when
there is fear of collusion among several agents; putting them
in the same cluster prevents them from influencing one an-
other’s chance of success. Peer selection is a fundamental

9http://blog.mrtz.org/2014/12/15/the-nips-experiment.html



problem that has received less attention than voting rules.
We envisage the need to develop robust solutions with good
incentive properties, as these are widely applicable in large-
scale, crowdsourcing settings.
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