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Abstract. We consider the two-sided stable matching setting in which
there may be uncertainty about the agents’ preferences due to limited
information or communication. We consider three models of uncertainty:
(1) lottery model — in which for each agent, there is a probability dis-
tribution over linear preferences, (2) compact indifference model — for
each agent, a weak preference order is specified and each linear order
compatible with the weak order is equally likely and (3) joint probabil-
ity model — there is a lottery over preference profiles. For each of the
models, we study the computational complexity of computing the sta-
bility probability of a given matching as well as finding a matching with
the highest probability of being stable. We also examine more restricted
problems such as deciding whether a certainly stable matching exists.
We find a rich complexity landscape for these problems, indicating that
the form uncertainty takes is significant.

1 Introduction

We consider a Stable Marriage problem (SM) in which there is a set of men
and a set of women. Each man has a linear order over the women, and each
woman has a linear order over the men. For the purpose of this paper we assume
that the preference lists are complete, i.e., each agent finds each member of the
opposite side acceptable.6 In the stable marriage problem the goal is to compute
a stable matching ; a matching where no two agents prefer to be matched to
each other rather than be matched to their current partners. Unlike most of
the literature on stable matching problems [5, 10, 12], we assume that men and
women may have uncertainty in their preferences which can be captured by

6 We note that the complexity of all problems that we study are the same for com-
plete and incomplete lists, where non-listed agents are deemed unacceptable—see
Proposition 2 in the full version of the paper [1].



various probabilistic uncertainty models. We focus on linear models in which
each possible deterministic preference profile is a set of linear orders.

Uncertainty in preferences could arise for a number of reasons both practical
and epistemological. For example, an agent could express a weak order because
the agent did not invest enough time or effort to differentiate between potential
matches and therefore one could assume that each linear extension of the weak
order is equally likely; this maps to our compact indifference model. In many real
applications the ties are broken randomly with lotteries, e.g., in the school choice
programs in New York and Boston as well as in centralized college admissions in
Ireland. However, a central planner may also choose a matching that is optimal
in some sense, without breaking the ties in the preference list. For instance,
in Scotland they used to compute the maximum size (weakly) stable matching
to allocate residents to hospitals [10]. We argue that another natural solution
could be the matching which has the highest probability of being stable after
conducting a lottery. Alternatively, there may be a cost associated with eliciting
preferences from the agents, so a central planner may want to only obtain and
provide a recommendation based on a subset of the complete orders [2].

As another example, imagine a group of interns are admitted to a company
and allocated to different projects based on their preferences and the prefer-
ences of the project leaders. Suppose that after three months the interns can
switch projects if the project leaders agree; though the company would prefer
not to have swaps if possible. However, both the interns and the project leaders
can have better information about each other after the three months, and the
assignment should also be stable with regard to the refined preferences. This ex-
ample motivates our lottery and joint probability models. In the lottery model,
the agents have independent probabilities over possible linear orders (e.g. each
project leader has a probability distribution on possible refined rankings over the
interns independently from each other). In the joint probability model, the proba-
bility distribution is over possible preference profiles and can thus accommodate
the possibility that the preferences of the agents are refined in a correlated way
(e.g. if an intern performs well in the first three months then she is likely to
be highly ranked by all project leaders). Uncertainty in preferences has already
been studied in voting [7] and for cooperative games [9]. Ehlers and Massó [3]
considers many-to-one matching markets under a Bayesian setting. Similarly, in
auction theory, it is standard to examine Bayesian settings in which there is a
probability distribution over the types of agents.

To illustrate the problem we describe a simple example with four agents. We
write b �a c to say that agent a prefers b to c and assume the lottery model.

Example 1. We have two men m1 and m2 and two women w1 and w2.
Each agent assigns a probability to each strict preference ordering as fol-
lows. (i) p(w1�m1w2) = 0.4 and p(w2�m1w1) = 0.6 (ii) p(w1�m2w2) = 0.0
and p(w2�m2w1) = 1.0 (iii) p(m1�w1m2) = 1.0 and p(m2�w1m1) = 0.0
(iv) p(m1�w2

m2) = 0.8 and p(m2�w2
m1) = 0.2. This setting admits two match-

ings that are stable with positive probability: µ1 = {(m1, w1), (m2, w2)} and
µ2 = {(m1, w2), (m2, w1)}. Notice that if each agent submits the preference list
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that s/he finds most likely to be true, then the setting admits a unique stable
matching that is µ2. The probability of µ2 being stable, however, is 0.48 whereas
the probability of µ1 being stable is 0.52.

1.1 Uncertainty Models

We consider three different uncertainty models:

– Lottery Model: For each agent, we are given a probability distribution
over strict preference lists.

– Compact Indifference Model: Each agent reports a single weak prefer-
ence list that allows for ties. Each complete linear order extension of this
weak order is assumed to be equally likely.

– Joint Probability Model: A probability distribution over preference pro-
files is specified.

Note that for the Lottery Model and the Joint Probability Model the rep-
resentation of the input preferences can be exponentially large. However, in
settings where similar models of uncertainty are used, including resident match-
ing [2] and voting [7], a limited amount of uncertainty (i.e. small supports) is
commonly expected and observed in real world data. Consequently, we consider
special cases when the uncertainty is bounded in certain natural ways including
the existence of only a small number of uncertain preferences and/or uncertainty
on only one side of the market.

Observe that the compact indifference model can be represented as a lottery
model. This is a special case of the lottery model in which each agent expresses
a weak order over the candidates (similar to the SMT setting [5, 10]). However,
the lottery model representation can be exponentially larger than the compact
indifference model; for an agent that is indifferent among n agents on the other
side of the market, there are n! possible linearly ordered preferences.

1.2 Computational Problems

Given a stable marriage setting where agents have uncertain preferences, various
natural computational problems arise. Let stability probability denote the prob-
ability that a matching is stable. We then consider the following two natural
problems for each of our uncertainty models.

– MatchingWithHighestStabilityProbability: Given uncertain prefer-
ences of the agents, compute a matching with highest stability probability.

– StabilityProbability: Given a matching and uncertain preferences of the
agents, what is the stability probability of the matching?

We also consider two specific problems that are simpler than StabilityProb-
ability: (1) IsStabilityProbabilityNon-Zero — For a given matching, is
its stability probability non-zero? (2) IsStabilityProbabilityOne — For a
given matching, is its stability probability one?

We additionally consider problems connected to, and more restricted
than, MatchingWithHighestStabilityProbability: (1) ExistsCer-
tainlyStableMatching — Does there exist a matching that has stability
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Lottery Compact Joint
Problems Model Indifference Probability

StabilityProbability
#P-complete ? in P
in P for all three models if 1 side is certain

IsStabilityProbabilityNon-Zero NP-complete in P in P
IsStabilityProbabilityOne in P in P in P

ExistsPossiblyStableMatching in P in P in P
ExistsCertainlyStableMatching in P in P NP-complete

MatchingWithHighestStabilityProb
? NP-hard NP-hard

in P for all models if 1 side is certain and
there is O(1) number of uncertain agents

Table 1. Summary of results.

probability one? (2) ExistsPossiblyStableMatching — Does there exist a
matching that has non-zero stability probability?

Note that ExistsPossiblyStableMatching is straightforward to answer
for any of the three uncertainty models we consider here, since there exists
a stable matching for each deterministic preference profile that is a possible
realization of the uncertain preferences.

1.3 Results

Table 1 summarizes our main findings. Note that the complexity of each problem
is considered with respect to the input size, and that under the lottery and joint
probability models the input size could be exponential in n, namely O(n! · 2n)
for the lottery model and O((n!)2n) for the joint probability model, where n is
the number of agents on either side of the market. The complete version of the
sketched or missing proofs can be found in the full version of the paper [1].

We point out that StabilityProbability is #P-complete for the lot-
tery model even when each agent has at most two possible preferences,
but in P if one side has certain preferences. Additionally, we show that
IsStabilityProbabilityNon-Zero is in P for the lottery model if each agent
has at most two possible preferences. Note that StabilityProbability is open
for the compact indifference model when both sides may be uncertain, and we
also do not know the complexity of MatchingWithHighestStabilityPro-
bility in the lottery model, except when only a constant number of agents are
uncertain on the same side of the market.

2 Preliminaries

In the Stable Marriage problem, there are two sets of agents. Let M denote a set
of n men and W a set of n women. We use the term agents when making state-
ments that apply to both men and women, and the term candidates to refer to
the agents on the opposite side of the market to that of an agent under consider-
ation. Each agent has a linearly ordered preference over the candidates. An agent
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may be uncertain about his/her linear preference ordering. Let L denote the un-
certain preference profile for all agents. We denote by I = (M,W,L) an instance
of a Stable Marriage problem with Uncertain Linear Preferences (SMULP).

We say that a given uncertainty model is independent if any uncertain pref-
erence profile L under the model can be written as a product of uncertain pref-
erences La for all agents a, where all La’s are independent. Note that the lottery
and the compact indifference models are both independent, but the joint prob-
ability model is not.

A matching µ is a pairing of men and women such that each man is paired
with at most one woman and vice versa; defining a list of (man, woman) pairs
(m,w). We use µ(m) to denote the woman w that is matched to m and µ(w) to
denote the match for w. Given linearly ordered preferences, a matching is stable
if there is no pair (m,w) not in µ where m prefers w to his current partner in
µ, i.e., w �m µ(m), and vice versa. If such a pair exists, it constitutes a blocking
pair ; as the pair would prefer to defect and match with each other rather than
stay with their partner in µ. Given an instance of SMULP, a matching is certainly
stable if it is stable with probability 1.

The following extensions of SM will come in handy in proving our results.
The Stable Marriage problem with Partially ordered lists (SMP) is an extension
of SM in which agents’ preferences are partial orders over the candidates. The
Stable Marriage problem with Ties (SMT) is a special case of SMP in which
incomparability is transitive and is interpreted as indifference. Therefore, in SMT
each agent partitions the candidates into different ties (equivalence classes), is
indifferent between the candidates in the same tie, and has strict preference
ordering over the ties. In some practical settings some agents may find some
candidates unacceptable and prefer to remain unmatched than to get matched
to the unacceptable ones. SMP with Incomplete lists (SMPI) and SMT with
Incomplete lists (SMTI) capture these scenarios where each agent’s partially
ordered list contains only his/her acceptable candidates. A matching is super-
stable in an instance of SMPI if it is stable w.r.t. all linear extensions of the
partially ordered lists.

We define the certainly preferred relation �cert
a for agent a. We write b �cert

a c
if and only if agent a prefers b over c with probability 1. Based on the cer-
tainly preferred relation, we can define a dominance relation D: Dm(w) =
{w} ∪ {w′ : w′ �cert

m w}; Dw(m) = {m} ∪ {m′ : m′ �cert
w m}. Based on the no-

tion of the dominance relation, we present a useful characterization of certainly
stable matchings for independent uncertainty models.

Lemma 1. A matching µ is certainly stable for an independent uncertainty
model if and only if for each pair {m,w}, µ(m) ∈ Dm(w) or µ(w) ∈ Dw(m).

We point out that certainly preferred relation can be computed in polynomial
time for all three models studied in this paper.

Certainly stable matchings are closely related to the notion of super-stable
matchings [4, 8]. In fact we can define a certainly stable matching using a termi-
nology similar to that of super-stability. Given a matching µ and an unmatched
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pair {m,w}, we say that {m,w} very weakly blocks (blocks) µ if µ(m) 6�cert
m w

and µ(w) 6�cert
w m. The next claim then follows from Lemma 1.

Proposition 1. A matching µ is certainly stable for an independent uncertainty
model if and only if it admits no very weakly blocking pair.

3 General Results

In this section, we present some general results that apply to multiple uncer-
tainty models. First we show that ExistsCertainlyStableMatching can be
solved in polynomial time for any independent uncertainty model including lot-
tery and compact indifference. Second, when the number of uncertain agents is
constant and one side of the market is certain, then we can solve Matching-
WithHighestStabilityProbability efficiently for each of the linear models.

3.1 An Algorithm for the Lottery and Compact Indifference Models

Theorem 1. For any independent uncertainty model in which the certainly pre-
ferred relation is transitive and can be computed in polynomial time, ExistsCer-
tainlyStableMatching can be solved in polynomial time.

Proof sketch. We prove this by reducing ExistsCertainlyStableMatching
to the problem of deciding whether an instance of SMP admits a super-stable
matching. The latter problem can be solved in polynomial time using algorithm
SUPER-SMP in [11].

Let I = (M,W,L) be an instance of ExistsCertainlyStableMatching
under an independent uncertainty model, assuming that the certainly preferred
relation is transitive and can be computed in polynomial time. We construct an
instance I ′ = (M,W, p) of SMP, in polynomial time, as follows. The set of men
and women are unchanged. To create the partial preference ordering pa for each
agent a we do the following. W.l.o.g., assume that a is a man m. For every pair
of women w1 and w2 (i) if w1 �cert

m w2 then (w1, w2) ∈ pm, denoting that m
(strictly) prefers w1 to w2 in I ′, (ii) if w2 �cert

m w1 then (w2, w1) ∈ pm, denoting
that m (strictly) prefers w2 to w1 in I ′. We claim, and show, that I ′ admits a
super-stable matching iff I has a certainly stable matching. ut

3.2 An Algorithm for a Constant Number of Uncertain Agents

Theorem 2. When the number of uncertain agents is constant and one side of
the market is certain then MatchingWithHighestStabilityProbability is
polynomial-time solvable for each of the linear models.

Proof sketch. Let I = (M,W,L) be an instance of MatchingWithHighest-
StabilityProbability and let X ⊆ M be the set of uncertain agents with
|X| = k for a constant k. We consider all the possible matchings between X
and W , where their total number is K = n(n − 1) . . . (n − k). Let µi be such a
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matching for i ∈ {1 . . .K}. The main idea of the proof is to show that there exist
an extension of µi to M ∪W that has stability probability at least as high as
any other extension of µi. In this way we will need to compute this probability
for only a polynomial number of matchings in n, which we can do efficiently for
each model when one side has certain preferences—see Theorems 3, 8 and 10,
and select the one with the highest probability. ut

4 Lottery Model

In this section we focus on the lottery model.

Theorem 3. For the lottery model, if one side has certain preferences, Stabil-
ityProbability is polynomial-time solvable.

Proof sketch. W.l.o.g. assume that men are certain. The stability probability of
a given matching µ is equal to the probability that none of the possible blocking
pairs form. The probability of one blocking pair {m,w} forming is equal to the
probability that w prefers m to µ(w) given m also prefers w to µ(m). ut

Theorem 4. For the lottery model, IsStabilityProbabilityOne can be
solved in linear time.

Theorem 5. For the lottery model, IsStabilityProbabilityNon-Zero is
polynomial-time solvable when each agent has at most two possible preference
orderings.

Proof sketch. We reduce the problem to 2SAT, that is polynomial-time solvable.
For each agent and for both possible preference orderings for that agent, we in-
troduce a variable, and we construct a 2CNF formula that encodes (1) that for
each agent exactly one preference ordering is selected, and (2) that the selected
preference orderings cause the given matching to be stable. Satisfying assign-
ments then correspond to witnesses for non-zero stability probability. ut

Lemma 2. In polynomial time, we can transform any 2CNF formula ϕ
over the variables x1, . . . , xn to a 2CNF formula ϕ′ over the vari-
ables x1, . . . , xn, y1, . . . , yn such that (1) ϕ and ϕ′ have the same number of
satisfying assignments, (2) each clause of ϕ′ contains exactly one variable xi
and one variable yj, and (3) for any two variables, there is at most one clause
in ϕ′ that contains these variables.

Theorem 6. For the lottery model, StabilityProbability is #P-complete,
even when each agent has at most two possible preferences.

Proof. We show how to count the number of satisfying assignments for a 2CNF
formula using the problem StabilityProbability for the lottery model where
each agent has two possible preferences. Since this problem is #P-hard, we get
#P-hardness also for StabilityProbability.
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Let ϕ be a 2CNF formula over the variables x1, . . . , xn. We firstly transform ϕ
to a 2CNF formula ϕ′ over the variables x1, . . . , xn, y1, . . . , yn as specified by
Lemma 2. We then construct an instance of StabilityProbability. The sets of
agents that we consider are {x1, . . . , xn, a1, . . . , an} and {y1, . . . , yn, b1, . . . , bn}.
The matching that we consider matches xi to bi and matches yi to ai, for each 1 ≤
i ≤ n. This is depicted below. Each agent bi has only a single possible preference,
namely one where they prefer xi over all other agents. Similarly, each agent ai
has a single possible preference where they prefer yi over all other agents. In
other words, the agents ai and bi are perfectly happy with the given matching.
The agents xi and yi each have two possible preferences, that are each chosen

•
b1

•
x1

•
b2

•
x2

•
b3

•
x3

· · ·
•
bn

•
xn

•
y1

•
a1

•
y2

•
a2

•
y3

•
a3

· · ·
•
yn

•
an

with probability 1
2 . These two possible preferences are associated with setting

these variables to true or false, respectively. We describe how these preferences
are constructed for the agents xi. The construction for the preferences of the
agents yi is then entirely analogous.

Take an arbitrary agent xi. We show how to construct the two possible
preferences for agent xi, which we denote by pxi

and p¬xi
. Both of these possible

preferences are based on the following partial ranking: b1 > b2 > · · · > bn, and
we add some of the agents y1, . . . , yn to the top of this partial ranking, and the
remaining agents to the bottom of this partial ranking.

To the ranking pxi
we add exactly those agents yj to the top where ϕ′ contains

a clause (¬xi ∨ yj) or a clause (¬xi ∨ ¬yj). All remaining agents we add to the
bottom. Similarly, to the ranking p¬xi we add exactly those agents yj to the
top where ϕ′ contains a clause (xi ∨ yj) or a clause (xi ∨¬yj). The rankings pyi
and p¬yi , for the agents yi, are constructed entirely similarly.

Now consider a truth assignment α : {x1, . . . , xn, y1, . . . , yn} →
{0, 1}, and consider the corresponding choice of preferences for the
agents x1, . . . , xn, y1, . . . , yn, where for each agent xi the preference pxi

is chosen
if and only if α(xi) = 1, and for each agent yi the preference pyi is chosen if
and only if α(yi) = 1. Then α satisfies ϕ′ if and only if the corresponding choice
of preferences leads to the matching being stable. Since each combination of
preferences is equally likely to occur, and there are 22n many combinations of
preferences, the probability that the given matching is stable is exactly q = s

22n ,
where s is the number of satisfying truth assignments for ϕ. Therefore, given q, s
can be obtained by computing s = q22n. ut

If each agent is allowed to have three possible preferences, then even the following
problem is NP-complete. The statement can be proved via a reduction from
Exact Cover by 3-Sets (X3C).

Theorem 7. For the lottery model, IsStabilityProbabilityNon-Zero is
NP-complete.
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We obtain the first corollary from Theorem 7 and the second from [13, Propo-
sition 8] and Theorem 7.

Corollary 1. For the lottery model, unless P = NP, there exists no polynomial-
time algorithm for approximating StabilityProbability of a given matching.

Corollary 2. For the lottery model, unless NP = RP, there is no FPRAS for
StabilityProbability.

5 Compact Indifference Model

The compact indifference model is equivalent to assuming that we are given an
instance of SMT and each linear order over candidates (each possible preference
ordering) is achieved by breaking ties independently at random with uniform
probabilities. It is easy to show that IsStabilityProbablityNonZero, Is-
StabilityProbablityOne, and ExistsCertainlyStableMatching are all
in P. The corresponding claims and the proof can be found in [1].

We do not yet know the complexity of computing the stability probability of
a given matching under the compact indifference model, but this problem can
be shown to be in P if one side has certain preferences.

Theorem 8. In the compact indifference model, if one side has certain prefer-
ences, StabilityProbability is polynomial-time solvable.

Proof. Assume, w.l.o.g., that men have certain preferences. The following pro-
cedure gives us the stability probability of any given matching µ. (1) For each
uncertain woman w identify those men with whom she can potentially form a
blocking pair. That is, those m such that w�mµ(m) and w is indifferent between
m and her partner in µ. Assume there are k of such men. The probability of w
not forming a blocking pair with any men is then 1

k+1 . (2) Multiply the proba-
bilities from step 1. ut

We next show that MatchingWithHighestStabilityProbability is NP-
hard. For an instance I of SMT and matching µ, let p(µ, I) denote the probability
of µ being stable, and let pS(I) = max{p(µ, I)|µ is a matching in I}, that is the
maximum probability of a matching being stable. A matching µ is said to be
weakly stable if there exists a tie-breaking rule where µ is stable. Therefore a
matching µ has positive probability of being stable if and only if it is weakly
stable. Furthermore, if the number of possible tie-breaking is N then any weakly
stable matching has a probability of being stable at least 1

N .
An extreme case occurs if we have one woman only with n men, where the

woman is indifferent between all men. In this case any matching (pair) has a
1
n probability of being stable. An even more unfortunate scenario is when we
have n men and n women, each women is indifferent between all men, and each
man ranks the women in a strict order in the same way, e.g. in the order of
their indices. In this case, the probability that the first woman picks her best
partner, and thus does not block any matching is 1

n . Suppose that the first woman
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picked her best partner, the probability that the second woman also picks her
best partner from the remaining n − 1 men is 1

n−1 , and so on. Therefore, the

probability that an arbitrary complete matching is stable is 1
n(n−1)...2 = 1

n! .

Theorem 9. For the compact indifference model MatchingWithHighest-
StabilityProbability is NP-hard, even if only one side of the market has
uncertain agents.

Proof sketch. For an instance I of SMTI, let opt(I) denote the maximum size
of a weakly stable matching in I. Halldorsson et al. [6] showed [in the proof of
Corollary 3.4] that given an instance I of SMTI of size n, where only one side
of the market has agents with indifferences and each of these agents has a single
tie of size two, and any arbitrary small positive ε, it is NP-hard to distinguish
between the following two cases: (1) opt(I) ≥ 21−ε

27 n (2) opt(I) < 19+ε
27 n.

When choosing ε so that 0 < ε < 1
2 we can simplify the above cases to

(1) opt(I) > 41
54n, since opt(I) ≥ 21−ε

27 n > 41
54n and (2) opt(I) < 39

54n, since
opt(I) < 19+ε

27 n < 39
54n.

Therefore, the number of agents left unmatched on either side of the market
is less than 13

54n in the first case and more than 15
54n in the second case. Let us

now extend instance I to a larger instance of SMTI I ′ as follows. Besides the
n men M = {m1, . . . ,mn} and n women W = {w1, . . . , wn}, we introduce 13

54n
men X = {x1, . . . xk} and another n

27 men Y = {y1, . . . yl} and n
27 women Z =

{z1, . . . zl}. Furthermore, for each yj ∈ Y , we introduce n men Y j = {yj1, . . . , yjn}.
We create the preferences of I ′ as follows. The preferences of men M remain the
same. For each woman w ∈W we append the men X and then Y at the end of
her list in the order of their indices. Each man xi ∈ X has only all the women
W in his list in the order of their indices. Furthermore, each yj ∈ Y has all the
women W first in his preference list in the order or their indices and then zj .
Let each zj ∈ Z has yj as first choice and then all the men Y j in one tie of
size n. Each man in Y j has only zj in his list. We will show that in case one
pS(I ′) ≥ 1

2n , whilst in case two pS ≤ ( 1
n )

n
27 . Therefore, for n > 227, it is NP-hard

to decide which of the two separate intervals contains the value pS(I ′). ut

6 Joint Probability Model

In this section, we examine problems concerning the joint probability model.

Theorem 10. For the joint probability model, StabilityProbability can be
solved in polynomial time.

Corollary 3. For the joint probability model, IsStabilityProbabilityNon-
Zero and IsStabilityProbabilityOne can be solved in polynomial time.

For the joint probability model, the problem ExistsCertainlyStableMatch-
ing is equivalent to checking whether the intersection of the sets of stable match-
ings of the different preference profiles is empty or not.
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Theorem 11. For the joint probability model, ExistsCertainlyStable-
Matching is NP-complete.

Proof sketch. The problem is in NP, since computing StabilityProbability
can be done in polynomial time by Theorem 10. The proof is by reduction from
3-Colorability. LetG = (V,E) be a graph specifying an instance of 3-Colorability,
where V = {v1, . . . , vn}. We construct an instance I of SMULP assuming the
joint probability model.

For each vertex vi ∈ V , we introduce three men mi,1,mi,2,mi,3 and three
women wi,1, wi,2, wi,3. Then, we introduce one preference profile P0 that ensures
that every certainly stable matching matches—for each i ∈ [n]—each mi,j to
some wi,j′ and, vice versa, each wi,j to some mi,j′ , for j, j′ ∈ [3]. Moreover,
it ensures that for each i ∈ [n], exactly one of three matchings between the
men mi,j and the women wi,j must be used:

(1) mi,1 is matched to wi,1, mi,2 is matched to wi,2, and mi,3 is matched to wi,3;
(2) mi,1 is matched to wi,2, mi,2 is matched to wi,3, and mi,3 is matched to wi,1; or
(3) mi,1 is matched to wi,3, mi,2 is matched to wi,1, and mi,3 is matched to wi,2;

Intuitively, choosing one of the matchings (1)–(3) for the agents mi,j , wi,j corre-
sponds to coloring vertex vi with one of the three colors in {1, 2, 3}.

Then, for each edge e = {vi1 , vi2} ∈ E, and for each color c ∈ {1, 2, 3},
we introduce a preference profile Pe,c that ensures that in any certainly sta-
ble matching, the agents mi1,j , wi1,j and the agents mi2,j , wi2,j cannot both be
matched to each other with matching (c). We let each preference profile appear
with non-zero probability (e.g., we take a uniform lottery). As a result, any
certainly stable matching directly corresponds to a proper 3-coloring of G. A
detailed description of the preference profiles P0 and Pe,c can be found in [1], as
well as a proof of correctness for this reduction. ut
By modifying the proof of Theorem 11, the following can also be proved.

Corollary 4. For the joint probability model, ExistsCertainlyStable-
Matching is NP-complete, even when there are only 16 preference profiles in
the lottery.

7 Future work

First we note that we left open two outstanding questions, as described in Ta-
ble 1. In this paper we focused on the problem of computing a matching with
the highest stability probability. However, a similarly reasonable goal could be
to minimize the expected number of blocking pairs. It would also be interesting
to investigate some further realistic probability models, such as the situation
when the candidates are ranked according to some noisy scores (like the SAT
scores in the US college admissions). This would be a special case of the joint
probability model that may turn out to be easier to solve. Finally, in a follow-up
paper we are planning to investigate another probabilistic model that is based
on independent pairwise comparisons.
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