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Abstract

Matching donations from deceased patients to patients on the waiting list account for over
85% of all kidney transplants performed in Australia. As algorithms are given responsibility to
make decisions that impact our lives, there is increasing awareness of the need to understand
the properties, e.g., efficiency, fairness, stability, and strategyproofness, of these algorithmic
decisions. Deceased organ matching is an unusual two-sided market as both sides are dynamic
and at each time step. In addition, both sides of the market share identical preferences over
the other side: each prefers the healthiest organ or patient available. However, these prefer-
ences are dynamic as the health and age of the patients change over time. We propose a simple
mechanism to perform matching in this dynamic, two-sided market and compare this new
mechanism with the more complex algorithm currently under consideration by the Organ and
Tissue Authority in Australia. We study axiomatic properties of these online mechanisms in-
cluding the robustness measures of stability and strategyproofness. We identify a number of
different types of fairness, such as to patients, to regions and to blood types and consider how
they can be achieved. We also perform experiments using real world data provided by the Or-
gan and Tissue Authority of Australia. Through both the axiomatic and empirical analysis we
find that our simple mechanism is more efficient, more stable, and fairer compared to the other
mechanism currently under consideration.

1 Introduction
Kidney disease costs the Australian economy billions of dollars every year. Over ten thousand peo-
ple in Australia are on dialysis, each costing hundreds of thousands of dollars in medical and welfare
costs. On 1st February 2016, there were 1083 people on the waiting list for a kidney transplant. Aus-
tralia is especially challenged in this area as kidney disease is a major problem within the indigenous
population. The incidence of end stage kidney disease in the indigenous population in remote areas
of Australia is 18 to 20 times higher than that of comparable non-indigenous peoples.1 Over the
course of 2016, 1448 people received a kidney from a deceased donor, whilst a further 265 people
received a kidney from a living donor. Just 44 of these came from paired exchanges. Paired exchange
represents less than 3% of all transplants.

A significant trend in Australia (as in other developed countries) is that age plays a major role
in kidney disease. It is impacting both the demand and supply sides of the kidney transplant market.
On the demand side, the age of patients in Australia waiting to receive a kidney has increased
significantly in recent years. In 2010 just 11% of the waiting list were 65 years or older while in
2015, this had increased to 15%. Over the next 30 years, the proportion of the population of Australia
aged over 65 years is predicted to double to around 25 per cent. This aging demographic will likely
further increase the age of people on the waiting list for a kidney transplant. On the supply side of
the market, the age of donated kidneys has also increased significantly. In 1989, the mean age of
donated kidneys in Australia was just 32 years old. In 2014, this had increased dramatically to 46
years old. Surgeons are now able and willing to transplant older kidneys into older patients. In 1989,
the oldest transplanted kidney came from a donor aged 69 years. In 2014, this has increased to an 80
year old donated organ. A number of factors including increasing life expectancy, medical advances,
and improved road safety have been driving these changes on one or both sides of the market.

1These (and subsequent) statistics about kidney disease and transplant in Australia are taken from [5].



Matching in Australia currently uses a mechanism based on first-come, first-served. Simply put,
the longer one waits, the closer one moves to the top of the waiting list. An arriving organ is offered
to the highest person on the list who is a compatible match. Given the limited supply of organs,
whilst this mechanism is “fair” from a procedural perspective, it is now no longer viewed by many
in the medical profession as “efficient” in terms of best use of the limited supply of organs. A 70-
year-old patient may receive a kidney from a 30-year-old donor, and live 10 or even 15 years. But the
organ might have lasted decades longer in a younger body according to UNOS statistics. Critics of
the current system have argued that the organ’s full potential for giving life is “wasted” on an older
person. In contrast, an organ from a 60-year-old donor transplanted into a 30-year-old patient may
fail before the patient reaches old age, thereby creating the need for an additional organ. Worse still,
the patient may be sensitized by the immune suppression drugs and so require an even closer match.
Transplanting young organs into old patients, and old organs into young patients might therefore be
considered less than optimal [23].

Care must be exerted when designing new mechanisms as we must understand how certain game
theoretic properties could arise. In 2012, a huge scandal was uncovered in Germany when it was
discovered that a number of doctors were fabricating patient data and doctoring patient samples in
an attempt to improve the ranking of their patients waiting for liver transplants in the Eurotransplant
scheme.2 The scandal resulted in several criminal prosecutions, and an approximately 30% drop in
donation rates in the subsequent two years as public confidence in the scheme fell drastically.

We have therefore started to work with the Organ and Tissue Authority, the statutory body in
Australia that allocates organs, to develop a new mechanism that explicitly takes account of the age
of the organs and of the recipients for the first time. There is thus a desire for a new mechanism that
matches the age of patients to that of the organs and does so in a fair and efficient manner while
avoiding opportunities for manipulation. In this paper, we consider what it means for a deceased
organ matching mechanism to be fair when it takes account of features like age. When reducing the
pool of candidate matches by age, other concerns come into focus like geography and blood type.
For instance, matching nationally rather than at the state or even hospital level improves the quality
of matches possible. However, there are concerns that organs will flow out of the less populated
states and territories to the larger states where demand is highest. We suggest that fairness needs to
be considered on multiple levels: patient, region, and blood type to name just three. We argue that a
simple mechanism that matches the age of organs to age of patients gives an allocation that is stable
under some rather natural preferences for the two sides of the market. There is thus no “incentive”
to deviate from the outcome it returns. This simple mechanism also offers patients a uniform time
on the waiting list; so it is procedurally “fair” like the current mechanism which ignores ages.

Contribution. We compare mechanisms for the online organ matching problem using both an
axiomatic and experimental analysis to study issues including manipulation, stability, and fairness.
Incorporating these concerns into allocation schemes is an important step in adopting these algo-
rithms and an important area of research [17, 28]. This work offers a case study in how to efficiently
and fairly solve online allocation problems [2] and it fits into a broader research program to develop
models and mechanisms for resource allocation problems that reflect the richness and complexity of
the real world [34, 7]. Through both the axiomatic and empirical analysis we find that our simple
mechanism is more efficient, more stable, and fairer compared to the other mechanism currently
under consideration.

2 Mechanisms for Kidney Matching in Australia
We are working closely with the Organ and Tissue Authority of Australia to develop a new mecha-
nism for allocating donated kidneys to patients. Their charter requires the allocation of organs to be
fair and efficient, though it is not formally defined what this means. The current mechanism in use

2https://www.theguardian.com/world/2013/jan/09/mass-donor-organ-fraud-germany
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in Australia offers organs sequentially to patients on the waiting list based on their compatibility and
time on list. Old organs will be offered to young patients, who will likely decline the organ, causing
the transplant to be delayed as the organ is now offered to the next patient on the waiting list. And
young organs will be offered to old patients, which may not get the best use out of a healthy organ.
Hence, there is a desire for a new mechanism that takes account the age of patients and organs.

Following the US lead the new mechanism will take account of these ages using two measures:
the Kidney Donor Patient Index (KDPI) and a patient’s Expected Post-Transplant Survival (EPTS)
score. The Kidney Donor Patient Index (KDPI) is an integer from 0 to 100 that is calculated from
the age of the donor, their diabetic status, cause of death and other factors. A donated kidney with
a KDPI of X has an expected risk of graft failure greater than X% of all donated kidneys. Expected
Post-Transplant Survival (EPTS) is also an integer from 0 to 100 that is calculated from the age of
the recipient, their diabetic status, the number of prior organ transplants, their time on dialysis and
a number of other factors. A patient with an EPTS of Y receiving a high quality donated kidney has
an expected survival time that is greater than 100-Y% of all patients. For a detailed discussion of
these measures see www.srtr.org and the work of Bertsimas et al. [9].

Whilst the Organ and Tissue Authority have decided to use KDPI and EPTS in their new mech-
anism, they have yet to decide on the precise details. Currently they collect KDPI and EPTS but
do not use it when proposing a match. One candidate under consideration by the Organ and Tissue
Authority is the BOX mechanism. This favors those matches that fit in the box bounded by KDPI
≤ 50 and EPTS ≤ 25 and this ordering can be viewed graphically in Figure 1. It favors matches
in a rectangular box to the bottom left, then above the upper left diagonal, and then towards the
lower right diagonal. The BOX mechanism has some similarity to the current US mechanism that
preferentially offers organs with KDPI ≤ 20 to patients with an EPTS ≤20.

However, it would seem that the first objective should be to allocate organs so that the KDPI of
an organ is close to the EPTS of the patient receiving the organ. Therefore we propose a simple MIN
mechanism [27]. This picks a compatible patient for an arriving organ that minimizes |KDPI-EPTS|,
tie-breaking by time on waiting list. Thus we are left with two mechanisms to compare.
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Figure 1: The BOX mechanism with a lexicographical scoring function with five key regions.

MIN: Allocate an arriving organ to a compatible patient that minimizes |KDPI − EPTS|, tie-
breaking by time on the waiting list and then randomly.

BOX: This mechanism ranks patients according to a lexicographical scoring function. The most
important terms in the scoring function ensure a match between compatible types. The least
important terms tie-break according to features like time on the waiting list. The middle term
orders matches as: (1) KDPI ≤ 50 and EPTS≤ 25; (2) EPTS−25 < KDPI; (3) EPTS−25≤
KDPI < EPTS−50; (4) EPTS−50≤ KDPI < EPTS−75; (5) EPTS−75≤ KDPI.

www.srtr.org


3 A Formal Model for Online Organ Matching
Allocated organs from deceased donors to patients is inherently an online problem. Online problems
are well studied in computer science especially in areas like scheduling [2, 30]. In an online organ
matching problem, we do not know in advance when organs will arrive, and must match them almost
immediately. We propose a formal model for online organ matching in which, at each time step, one
of three actions occurs: (1) a set of organs arrives, (2) a set of patients arrive, (3) or a set of patients
depart. Organs are matched as soon as they arrive, whilst new patients are simply added to the
waiting list. In practice, organs tend to arrive in pairs as each deceased donor typically donates both
their kidneys. Patients depart the waiting list when they are matched to an arriving organ, receive a
transplant elsewhere, or become too sick for transplant or die. In Australia, the size of the waiting
list remains roughly constant over time.

We employ a model of organ matching where each arriving organ has an associated blood type,
KDPI and state while each patient has an associated blood type, EPTS and state. The EPTS of a
patient slowly increases over time as they spend longer on dialysis, in addition to other jumps such
as the possible onset of diabetes. We only permit matches of a compatible type, e.g. organs coming
from a donor of blood type O can be matched to recipients of any blood type, whilst organs coming
from a donor of blood type AB can be matched only to recipients of blood type AB. We focus on
compatibility by blood type, but in the real world there are a host of additional factors, e.g. HLA
type, for a more nuanced discussion see the data and simulators from www.srtr.org.

We define the quality of a matching of an organ to a patient in two ways. At the level of the
individual, the utility of a match is simply 100−KDPI. A patient wants the youngest possible organ.
At the level of society, the welfare of a match is 100−|KDPI−EPTS|. To maximize the benefit to
society of a limited supply of organs, we want the KDPI to be as close as possible to EPTS. As
we consider randomized mechanisms, we can compute such measures as utility and welfare both ex
post and ex ante.

4 Desirable Axioms for Allocation
An axiomatic study of algorithms is a corner stone of game theory [25] and computational social
choice [11]. For instance, both the MIN and BOX mechanisms are anonymous: identical patients
added to the waiting list at the same time are treated identically. A mechanism satisfies participation
if a patient cannot increase their expected utility by joining the waiting list at a later date. Unfortu-
nately, the online nature of organ matching means that no mechanism can satisfy participation.

Theorem 1 No mechanism for online organ matching satisfies participation.

Proof. Suppose two patients join the waiting list at the first time step, an organ with a KDPI of 50
arrives at the second time step, and one with a KDPI of 0 at the third. Both patients have an incentive
to wait till after the first organ is allocated before joining the waiting list. �

A fundamental and desirable property of an allocation of organs is efficiency. In this setting all
agents have the same utility value over the organs. If you lower the KDPI of the organ matched to one
patient, you must inevitably increase the KDPI of an organ matched to some other patient. Therefore
all allocations are efficient in terms of utility. We consider also efficiency in terms of welfare. An
online allocation is welfare efficient if and only if there is no other online allocation in which
one patient has greater welfare and none of the other patients have lower welfare. A mechanism
is welfare efficient if and only if it only returns online allocations that are welfare efficient. Note
that we limit our discussion to online allocations. Organs can only be matched to patients that are
actually present on the waiting list as we cannot match to a patient yet to join the waiting list.

Example 1 Suppose we have one patient on the waiting list with an EPTS of 100, and an organ
with a KDPI of 0 arrives and is matched to this patient. Suppose a new patient now arrives with an
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EPTS of 0, followed by an organ with a KDPI of 100, that is again matched with the only patient on
the waiting list. This is the only possible online allocation so it is welfare efficient. But in an offline
setting, this allocation is not welfare efficient. We could match the first patient with the second organ,
and the second patient with the first organ, increasing the welfare of both patients.

Another desirable property of online mechanisms is that they do not lead to starvation. In online
settings this is typically handled by giving higher priority to agents the longer they wait. In all
the proposed mechanisms, wait time is only used for tie-breaking between agents. It is possible in
the worst case for patients never to be matched. However, we do not observe this in practice with
the historical distribution of patients and organs. Both mechanisms under consideration may never
match patients on the list.

5 Stable Allocations
We can view the allocation of organs from deceased donors as a two-sided matching problem. On
one side of the market, we have the patients on the waiting list. To maximize their post transplant
survival time, each patient simply wants to receive the best quality organ, i.e., the organ with the
lowest KDPI possible. Hence, the patients have identical preferences over the organs. On the other
side of the market, we have the organs with preferences over the patients. Of course, organs don’t
actually have preferences. They are just organs. And the donors are deceased so also arguably don’t
have preferences for their organs at this point. This preference of the organs could be seen as a
societal or medical preference, i.e., to ensure the maximum good from limited supply. We suppose
then that the preference of the organ side of the market is to minimize |KDPI -EPTS|. Roughly
speaking, the preference of this side of the market is to match age of organ to age of patient.

A fundamental notion in a two-sided matching market is stability [31]. We do not want an alloca-
tion where a patient and organ not currently matched to each other would both prefer to be matched
to each other rather than their current matching. That is, we want an allocation where there is no
incentive to deviate. This is, however, a somewhat unusual two-sided matching market compared to
the usual two-sided market in which we have a static set of men and women with static preferences
over each other [18]. One side of our market is dynamic as patients arrive and depart over time. In
addition, the preferences of the other side of the market are dynamic as the EPTS of the patients
change over time. In the case of deceased organ matching, both sides of the market have identical
preferences, so rather than a possible lattice of solutions [18], it turns out that under modest assump-
tions there is an unique stable allocation, ignoring the permutation of patients with identical EPTS
and of organs with identical KDPI. This stable allocation is the one in which KDPI=EPTS.

Theorem 2 In the two-sided online organ matching market, despite EPTS scores changing over
time and patients arriving and departing, there is always a stable allocation.

We suppose that the market is large so that there are enough compatible patients to ensure that
KDPI can be made equal to EPTS in each match. There is then an unique stable allocation. In this
allocation, all organs with a KDPI of 0 are matched with patients with an EPTS of 0. The patients
receive organs with lowest possible KDPI so cannot be happier. And the organs gets matched to
patients so that KDPI=EPTS so again could not be happier. All the organs with a KDPI of 1 are
matched with patients with an EPTS of 1. The organs get matched to patients so that KDPI=EPTS
so could not be happier. And the patients could only be happier if they were matched with an organ
with a KDPI of 0. But none of these organ would prefer such a match. Similarly, the organs with a
KDPI of 2 are matched with patients with an EPTS of 2, and so on. The unique stable allocation has
KDPI=EPTS in every match.

Constructing this stable allocation required us to have complete knowledge of the organs to
arrive, as well as the patients to arrive and depart. In practice, this is an online problem and we do



not have such knowledge when proposing matches. Indeed, we can show an impossibility result that
no mechanism for online organ matching can be guaranteed to return a stable allocation because of
the uncertainty about the future.

Theorem 3 No mechanism for online organ matching is guaranteed to return a stable allocation.

Proof. Suppose we have two patients on the waiting list, one with a constant EPTS of 10, and
another with a constant EPTS of 20, and an organ arrives with a KDPI of 30. There are two cases.
In the first case, the mechanism matches this first organ to the patient with an EPTS of 10. In this
case, the next organ to arrive has a KDPI of 20. This is matched to the remaining patient with an
EPTS of 20. This is unstable as the organ in this matching with a KDPI of 20, and the patient in the
first matching with an EPTS of 10 would both prefer to be matched with each other. In the second
case, the mechanism matches this first organ with the patient with an EPTS of 20. In this case, the
next organ to arrive has a KDPI of 40. This is matched with the remaining patient with an EPTS of
10. This is unstable as this patient, and the organ in the first matching with a KDPI of 30 would both
prefer to be matched with each other. �

Although we cannot guarantee that an online mechanism will return a stable allocation, the MIN
mechanism is likely to return an allocation that is stable in a large market as the unique stable allo-
cation is the one where KDPI=EPTS for all pairs. In the experimental section, we will demonstrate
that the MIN mechanism does indeed return an allocation close to stable, even taking into account
the dynamic features of the market.

6 Strategyproof Allocations
Could we have avoided the Germany transplant scandal? Could we design a mechanism where pa-
tients (or their doctors) cannot manipulate their EPTS to improve the probability of being matched?
As in the German case, we focus on manipulations that improve the probability of a patient being
matched. We could, however, give very similar results if we considered instead manipulations that
reduce the (expected) time till a patient is matched, or decreased the (expected) KDPI of the organ to
which a patient is matched. Analysis of time till matching or the quality of the matching is slightly
more complex as we need to take account of patients that are never matched. We can, for instance,
give them a “virtual” organ with a KDPI of 101 at the time of their departure or at the end of the
market if they remain till then.

We say that a mechanism for online organ matching is strategyproof if and only if for any
matching market, no patient can improve their probability of being matched to an organ by declar-
ing a false EPTS. We consider responsive mechanisms where there is at least one market where one
agent can change the probability of receiving an organ by declaring a different EPTS. For example,
both MIN and BOX are responsive. To return stable matchings other than by chance, a mechanism
needs to be responsive. We contrast this with irresponsive mechanisms where in no market can any
agent change their probability of receiving an organ by declaring a different EPTS. For example, the
mechanism that matches organs uniformly at random amongst compatible patients is irresponsive.
As a second example, the mechanism that matches an arriving organ to the oldest compatible pa-
tient on the waiting list is also irresponsive. Before the introduction of KDPI and EPTS in the US,
matching was largely driven by time on waiting list. The following very simple result demonstrates
that responsiveness rather unsurprisingly leads to the possibility of manipulation.

Theorem 4 A mechanism for online organ matching is strategyproof if and only if it is irresponsive.

Proof. Suppose a mechanism is responsive. Then there exists a market on which one patient declar-
ing a new and different EPTS at some point changes the probability of this patient being matched.



Without loss of generality, we can suppose that it increases, otherwise we simply swap the new
EPTS for the old. Hence, the mechanism is not strategy-proof.

Suppose a mechanism is irresponsive. Then in any market, declaring a different EPTS does not
change the probability of being matched. Since the probability of being matched does not change, it
cannot improve. Hence the mechanism is strategy-proof. �

Irresponsive mechanisms are undesirable since they will likely return matches in which EPTS
and KDPI are not aligned. This simple result does not mean manipulations cannot be avoided. We
can still identify some barriers to manipulation. Two possible barriers are secrecy and computational
complexity. If we can keep the waiting list secret, then a risk averse patient may have an incentive
to be sincere. Similarly, even if the waiting list is public, we may be able to construct a mechanism
where it is computationally intractable to compute a successful manipulation. Similar computational
barriers have been proposed in other areas of social choice [8] and fair division [22].

7 Fairness in Organ Allocation
The charter of the Organ and Tissue Authority of Australia requires that the mechanism employed be
both fair and efficient, though it is not formally defined what this means. In this section we consider
three notions of fairness: age, geography, and blood type. Due to space constraints we have moved
the results about blood type to the appendix. In general, with fairness to blood type, we see that
depending on definition, it may be necessary to restrict intra-blood type flows to ensure an equal
allotment of organs.

7.1 Fairness to Age

Figure 2: Cumulative distribution function (CDF) of waiting time for all patients and broken down to those
with a low and high EPTS. Under the BOX mechanism we see a statistically significant movement to the right
as EPTS increases, hence older patients must wait longer to receive their transplants.

We first consider the fairness of the two proposed matching mechanisms. We argue that, unlike
the BOX mechanism, the MIN mechanism is procedurally fair to patients of different ages. Figure 2
we plot the cumulative distribution function (CDF) of waiting time for patients using the two mech-
anisms in a simulation as discussed in Section 8. When an organ arrives, it is matched nationally
with a compatible patient using either the BOX or MIN mechanisms on a State or Federal allocation.

We see that the BOX mechanism is not procedurally fair. Those patients on the waiting list with
an EPTS of 25 or less spend less time waiting than those with an EPTS of greater than 25. This
is to be expected as the BOX mechanism preferentially favors patients with an EPTS of 25 or less.
By comparison, the MIN mechanism is much more procedurally fair. The time on the waiting list is
less dependent on EPTS (i.e., near the line y=x). Waiting time with the MIN mechanism is almost
constant as is expected given that EPTS and KDPI are population percentiles.



7.2 Fairness to Geography
Matching at the national, rather than the state or hospital level increases the pool of potential donors.
Especially for rarer blood types, matching that takes account of KDPI and EPTS will be better if
we can use the larger national pool. We expect matches to be better nationally as we can perform
all state level matches as well as those now possible nationally. There is a time penalty to matching
nationally, however, it only takes about five hours to fly an organ across the country and this has no
ill effect on the outcomes. There is thus little to be lost, and much to be gained, if the states and
territories can be persuaded to match nationally.

In Figure 4, we plot the distribution of donors and patients waiting for transplant according to
state and territory. We compare this with the distribution of the population within Australia. Donation
largely tracks population, as might be expected. The major exception is New South Wales (NSW)
and the Australian Capital Territory (ACT).3 Donation rates in NSW/ACT are much lower than in
the rest of Australia. To compound this issue, the waiting list in NSW/ACT is proportionally much
longer than in the other states and territories. In part, this may reflect that doctors are more likely to
list patients on the waiting list in New South Wales than in a state like Queensland (QLD) where the
waiting list is smaller proportional to the population. The data may also reflect that patients gravitate
towards the more sophisticated medical facilities available in a populous state like New South Wales.

0

10

20

30

40

50

NSW/ACT VIC/TAS QLD SA/NT WA

Pe
rc

en
ta

ge

Donor
Recipient

Population
27.7

31.5

19.8

10.7 10.2

41.2

31.7

13.3

7.0 6.8

33.7

26.3

20.1

8.1
10.9

Figure 3: Distribution across states of donated organs, patients waiting transplant, and the wider population of
Australia from 2010 to 2014.

There is concern, especially amongst the smaller states like South Australia (SA), Western Aus-
tralia (WA) and the Northern Territory (NT), that donated organs will flow into New South Wales
due to its comparatively much longer waiting list. In 2014, there were 614 kidneys transplanted na-
tionally. If we had matched nationally, rather than at the state level, we could expect on aggregate
that 21 out of the 63 organs donated in Western Australia would flow out of the state (exactly one
third), 23 out of the 66 donated organs would flow out of South Australia and the North Territory
(slightly over one third), 40 out of the 122 organs donated in Queensland would flow out of state
(just under one third). Almost all of the inflow of organs would be to New South Wales. Only one
of the organs flowing out of SA/WA/NT/QLD would be expected on aggregate to end up in Victoria
(VIC). The other 83 organs flowing between states and territories would end up on aggregate being
given to patients in New South Wales. This inflow of 83 organs into New South Wales represents
13.5% of the total number of deceased organs donated nationwide.

Matching nationally ensures that everyone gets the same chance of a match irrespective of geog-
raphy. This is very far from the case currently. In 2014, for example, the waiting list in New South
Wales contained 474 patients at the start of the year, and increased to 500 by the end. Only 152 of
the patients on the waiting list received a deceased organ. By comparison, in South Australia, the
waiting list began and ended the year with 64 patients on it. During the course of the year, patients

3There are no facilities for kidney transplant in ACT so all ACT patients are dealt with in NSW.



were added to and left the waiting list4 but a total of 67 patients received a deceased organ. Patients
waitlisted in South Australia thus have a much greater chance of receiving a transplant than in New
South Wales. On average, patients waitlisted in South Australia wait about one year for transplant
whilst those in New South Wales wait around three.

Matching nationally would result in greater fairness as waiting times across states would become
more equal. On the other hand, matching nationally would result in a flux of organs out of the smaller
states into New South Wales. The only way to prevent this is to harmonize donation rates within
states and a campaign to this effect is underway.

8 Experimental Analysis
From an axiomatic perspective, online organ matching appears to be a challenging problem. In this
section, we run some experiments using historical data to determine whether ideals including effi-
ciency, stability, and fairness are achieved in practice when allocations are run at both a state and
federal level. The Scientific Registry of Transplant Recipients publishes detailed models of expected
donations and transplant survival times for the US Market, see www.srtr.org but no such de-
tailed data exists for the Australian market. In what follows we generate patients and kidneys using
some of the same techniques but tuned for the Australian market. We do not go into detail on post
transplant survival as we are more concerned with the properties of the initial allocation. Subjecting
this allocation to optimization under the expectation of future survival times is an interesting avenue
for future work with some recent initial investigation [13].

Data Generation. Since we have only one historical data set, we first need to build a simulator
that is as realistic as possible so we can run thousands of experiments with realistic data. This relies
on two sources of data provided by the Organ and Tissue Authority of Australia: historical statistics
published as the Public ANZDATA, www.anzdata.org.au and more detailed statistics provided
to us as the Research ANZDATA which includes detailed information about the Australian market
from 2010 – 2014. We cross validate this data with additional information from the Australian
Bureau of Statistics; the Public and Research sets; and Wikipedia, we determined the probability
distribution over the Blood Type and State of donors and patients.

We generate EPTS for the patients and KDPI for the kidneys according to the distributions
contained in the Research ANZDATA for the years 2010–2014 with a small amount of random
noise added for the least significant digit. We use a Poisson process to simulate arrival of patients to
the market. Specifically, the number of patients arriving each day to the market is P(x) = e−µ ·µx/x!.
We use the long run average of 340 donors a year giving us a µ = 340/365. Each patient that arrives
donates up to 2 identical kidneys with the average being 1.72. The waiting list in Australia is held
relatively constant at ≈ 1200 people. When kidneys are transplanted, new patients replace those
that depart the market with a match. On average 150 patients are removed from the waiting list
randomly throughout the year for a number of reasons including death and off list transplant. We
model removal from the list again as Poisson process with µ = 150/365; a new patient is generated to
replace those removed. The EPTS of patients degrades over time for a number of reasons and≈ 180
patients are removed from the list each year due to their EPTS becoming too high. We increase
the EPTS of patients every 30 days between 1–2 points, uniformly at random, and remove patients
whose EPTS increases past 100. Our simulator, along with one for the US kidney allocation market,
is available at www.preflib.org [26].

Experimental Treatments and Evaluation. For our experiments we generate an initial list of
patients and kidneys and then simulate the arrivals, departures, and donations by stepping through
a simulated 8 years. We repeat this process 1000 times to gain confidence in the statistics we report
here [12]. We use the first four years of data to burn in our simulator, so that the allocation has

4During 2014, one patient died waiting in South Australia, two received an organ from a living donor, 9 were taken off
the list for medical and other reasons, and 79 new patients were added.
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Figure 4: Visualization of the results of one run of our algorithm for both the MIN and BOX algorithms with
both the State and Federal restrictions. MIN performs significantly better than BOX in terms of minimizing
|KDPI−EPTS| and the Federal allocation outperforms the State allocations in ensuring better outcomes.

reached a steady state, and report statistics based on the latter four years of data. The same list of
kidneys and patients (their order of arrival) are used for all of the treatments (both mechanisms
and both state and federal allocations). Hence, the difference in statistics are generated only by the
particular matching strategy.

For all experiments we enforce basic blood type compatibility. That is, A can donate to A and
AB, B to B and AB, AB to AB, and O can donate to anyone. We also differentiate between two
treatments regarding the level the allocation takes place at. In a Federal allocation, a kidney can be
transplanted to any state in Australia. We enforce that in the case of a tie, the kidney goes to the
instate patient. In a State allocation all allocations are run within states only. Organs not able to be
transplanted in state due to type restrictions are then matched to any patient outside the state where
the kidney originated. Ties for all mechanisms are broken by state, time on list, and then randomly.

Ideally we would transplant every organ into a patient such that KDPI and EPTS are equivalent.
This gives us a notion of optimality that is defined by the line y = x. We use two error metrics to
judge how well our points match this idealized line. Note that since we have regression through
the origin here we must be careful with computing our statistics [12]. Firstly, the Coefficient of
Determination (R2), if we treat KDPI as a dependent variable w.r.t. ETPS then we can use R2 to
get an indication of the proportion of the variance of KDPI that is predictable from EPTS. If we
want to ensure that KDPI and EPTS are perfectly correlated (x = y) then we would get an R2 = 1.
We compute: R2 = 1− ∑i(EPTSi−KDPIi)

2/∑i(KDPIi−KDPI)2. Secondly, we use the Standard Error of
the Regression (s), since s is expressed in the same units as the independent variable (KDPI) it
gives us an intuitive measure of how how much KDPI varies, on average, from EPTS. Since we are
forcing our regression through the origin we only have one degree of freedom in the model giving

s =
√

1
n−1 ∑i(KDPIi−EPTSi)2.

8.1 Efficiency, Waiting Time, and Participation
Figure 4 shows the results for one simulation, which is typical for all. We see that, no matter the
state, the patient results are better for the MIN algorithm and Federal matching. MIN outperforms
BOX by a statistically significant margin for both the R2 measure and s for all 1000 instances that
we tested. For the MIN algorithm, Federal significantly outperforms State, across all instances.

One concern with the Federal v. State treatments on the practical level is the flow of organs out of
a state will exceed the flow of organs into a state. In effects, states do not want to lose organs to other
states. When tracking organ flow we use the term inflow to mean organs that come into a particular
state or type and outflow to mean organs that move to a different state or type. A flow between organ
types means that, for instance, an O kidney was donated to an AB patient. Figure 8a (moved to the
appendix) illustrates the flow of organs between states and we can see that the majority of organs are
allocationd within the state with the exception of Western Australia. The cost in terms of efficiency



Mean Number of
Swaps

Mean Number
of Patients

Mean Gain
in Welfare

MIN
Federal 3.90 (3.4) 3.59 (3.0) 0.1 (0.01)
State 314.12 (53.9) 181.4 (22.6) 3.81 (0.85)

BOX
Federal 24,548.6 (2,233.1) 937.83 (30.87) 14.18 (0.34)
State 23,555.6 (2,173.6) 934.62 (29.79) 14.18 (0.32)

Table 1: Mean number of Pareto improving swaps per patient, mean number of patients who could participate
in a swap, and mean gain in welfare (standard deviation) for the four treatments. The MIN, Federal algorithm
achieves the greatest efficiency and lowest frequency of opportunities for Pareto improving trades.

to the overall system, illustrated in Figure 4, is a much greater concern than organ flows.
Time on List. One of the main concerns for patients is the amount of time that they expect to spend
on the waiting list. To investigate this we computed the mean waiting time in days by EPTS, the
results for all states and for NSW/ACT are broken out in Figure 9a (moved to the appendix). We
have omitted variance/error bars for this graph as they completely overlap. In general, the variance
is constant for each of the mechanisms and treatments with the MIN mechanism having a lower
variance of about ±200 days while the BOX mechanism has a higher variance of about ±600 days.
We observe that the variance for the BOX algorithm is strictly higher than the variance for the MIN
algorithm across all treatments.

Looking at Figure 9a we see that the MIN mechanism has a lower mean waiting time versus
BOX except for patients with very high EPTS. This gap closes for patients with higher EPTS, likely
due to the fewer organs that are donated with very high EPTS. It is interesting to note that the State
v. Federal question is roughly negligible for mean time on list. Consequently, Federal allocations
increase patient welfare without a significant impact on waiting time. The BOX has large equivalence
classes between patients, illustrated in Figure 1. We conjectured that these large equivalence classes
would give lower wait times as the mechanisms tie-break based on the time on the waiting list.
However, this is not the behavior that we see in the data except for those high EPTS patients.
Efficiency. To investigate the efficiency of the various mechanisms in practice we investigate the
number of Pareto swaps [11], i.e., between kidney/patient pairs such that the welfare of one of the
pairs is increased while the other is not decreased. To do this we took, for each of the 1000 iterations,
the complete set of transplants and checked to see for each kidney/patient if there exists another
kidney/patient that arrives later in time that would enable a Pareto swap. Since one kidney/patient
pair may be involved in multiple potential swaps, and a welfare efficient matching would only use
at most one of these swaps per patient, we also compute the number of unique kidney/patient pairs
that could be part of a Pareto improving swap. We also track the average increase in welfare over
the set of potential swaps per instance. These values are reported in Table 1.

The metric we compute is a worst case one. We do not take into account the aging factor for the
later swap. Hence, the number of swaps reported is an upper bound and would be lower, in reality, if
we aged the patient participating in the swap. Additionally, kidneys need to be matched on the same
day they are donated so these swaps are not even realistically possible. In the experiments for MIN,
there were no improving swaps possible on the same day (though there were some for BOX). We
report improving swaps that could have happened on any day to give an upper bound on the worst
case that could happen if we could store the kidneys.

The lower the numbers across the board in Table 1 for the MIN algorithm shows that it is do-
ing much better in terms of welfare efficiency than BOX. It is encouraging to see that the Federal
allocations result in significantly fewer patients who would benefit from a Pareto swap. Additional
evidence for the quality of the MIN algorithm can be seen in the CDF of |KDPI−EPTS| over all
1000 runs seen in Figure 8b; the clear winner is MIN with the Federal treatment. There is a vanish-



ingly small probability of observing a value of |KDPI−EPTS| larger than 10. Turning to the right
side of 8b, we see that, in fact, most of the efficiency loss is due to AB organ transplants. As there
are so few AB organs, it is hard to match them in way that maximizes welfare.

9 Related Work
Online problems have been studied primarily in online scheduling [2]. Mechanism design concerns
have been extensively addressed in the online scheduling literature [30] though online allocation
has received less attention. Online matching markets without money have been a common area of
study in computer science. Gujar and Parkes [20] study an online matching market where there is no
money, much like organ allocation, though only one side of their market is dynamic. Another online
matching market was studied by Bosek et al. [10]. In their model the market incrementally increases
in size and at each increase, a new maximum stable matching must be found. In our work we are not
concerned with stability but fairness. Additionally, in online organ matching, unlike general online
matching, all agents have a shared preference model and both sides of the market are dynamic.
Finally, Aleksandrov et al. [3] consider the online allocation problem faced by foodbanks, a related
online matching problem where only one side of the market is dynamic.

Kidney exchanges have been extensively studied in the economics [33, 32], medical [29], and
computer science literatures [15]. These exchanges have also been studied in online settings [6] and
in predictive settings using machine learning techniques [13]. Axiomatic and fairness concerns have
received attention in the computer science literature in both theory and practice [16], as well as the
online feature that such exchanges are repeated over time [6, 13]. Additional work in computer sci-
ence has also focused on strategyproof mechanisms for kidney exchange at the patient and hospital
level [4] and on merging kidney exchanges with other organs such as lungs [24] and livers [14].
However, as we have pointed out, the majority of kidney donations are performed from deceased
patients and the online version of the deceased donor has historically received little attention.

A related line of work is determining what factors should be included in the scores such as
KDPI and EPTS. Bertsimas et al. [9] study the problem of using data driven methods for finding
national organ allocation policies. In general, they adopt a statistical approach that designs policies
that work well on average based on historical data. By comparison, we have taken a more axiomatic
approach. The Organ and Tissue Authority in Australia wish to use a new mechanism based solely
on blood/tissue type and KDPI/EPTS. This prevents an approach like Bertsimas et al. [9] where we
compute weights for terms going into KDPI/EPTS.

In proposing a new mechanism, we cannot overlook the challenging issues of managing the
transition [1]. The US has already adopted a matching mechanism that takes account of KDPI and
EPTS and others including the National Kidney Allocation Scheme [21] introduced in the UK in
2006 has as well. Interestingly, the UK scheme is a points system that uses a number of features
including blood group points which, as we have proposed in considering fairness across blood type
in Australia, end up allocating a proportion of O type kidneys to B type recipients. It may be difficult
to persuade patients to buy into a new mechanism if they will be treated differently and we have
shown that in many respects, the MIN mechanism treats most patients the same in terms of waiting
time but results in more efficient outcomes, though there will be some individual winners and losers.

10 Conclusions
We have proposed the novel MIN mechanism for the online matching of deceased organs to donors
and compared this both theoretically and empirically with the BOX under consideration in Australia.
We argued that fairness needs to be considered on multiple levels: patient, region, and blood type to
name just three. We investigated other axioms including stability and strategyproofness and showed
that despite the dynamic nature of this two-sided market, a stable allocation always exists, and that



the MIN mechanism is likely to find an allocation close to this. We find that the MIN algorithm
outperforms the proposed BOX mechanism across all studied areas. For the future, mitigating temp-
tation for strategic behavior remains an important dimension of the policy-making in this area as
does extending our studies to incorporate post-transplant success.
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A Fairness

A.1 Fairness to Blood Type
Reducing the pool of candidate matches by considering the age of organs and patients creates fresh
challenges especially for rarer blood types. How do we treat different blood types fairly? We could,
for example, permit organs coming from donors of blood type O to be transplanted into patients of
blood type B since blood type O are universal donors. But this would disdvantage patients of blood
type O waiting for transplant. Patients of blood type B would be matched out of the larger pool of
organs of blood type O and B, whilst patients of blood type O would be matched out of the smaller
pool of organs of blood type O only. This phenomenon has been observed in the European transplant
market [19]. On the other hand, there might be a greater demand for organs of blood type B relative
to supply compared to blood type O. Transplanting a small number of organs from donors of blood
type O into patients of blood type B could help to correct any imbalance.

Another concern when moving to a new mechanism based on age of organs and age of patients
is that the quality of matching for rarer blood types will decrease as the pool size decreases since
some matches will be are ruled out based on age considerations. Historical data demonstrates where
challenges might arise in the Australian market. In Figure 6, we plot the distribution of donors and
patients waiting for transplant according to blood type. We compare this with the distribution of
blood types within the population. The exact blood type distribution in the population as a whole is
not tracked, but we do have the distribution in the subset of the population donating blood.
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Donation tracks population quite well. Those ethnic and other groups willing to donate their
blood are perhaps also likely to be those willing to donate their organs. However, demand is some-
what different. In particular, there is a greater percentage of patients of blood type B waiting trans-
plant than donation. 14.4% of the waiting list have blood type B yet only 10.1% of organs donated
are blood type B. On the other hand, patients of blood type A are better off. 39.3% of donated organs
are of blood type A, yet only 32.9% of the waiting list have this blood type. There is some medical
evidence that people of blood type A are less prone to kidney disease.

To see how we might improve fairness across blood types, we set up a simple linear model. Let
pt be the fraction of the patients with blood type t. For instance, pA and pAB are the fraction with
blood type A and AB respectively. Let ot be the fraction of the organs with blood type t. For instance,
oA and oAB are the fraction with blood type A and AB respectively. We suppose matching takes into
account other factors like HLA type but consider here just the size of the pool from which possible
matches are drawn.

We suppose that within our matching procedure a fraction xt1,t2 of the donated organs are of type
t1 and are considered for transplant to patients of blood type t2 subject to HLA match and other
factors like age. Thus 0 ≤ xt1,t2 ≤ ot1 . We insist on blood type compatibility for transplant. Hence,
xA,O = xA,B = xB,O = xB,A = xAB,O = xAB,A = xAB,B = 0. That is, we cannot transplant organs of type A
to patients of type O, organs of type A to patients of type B, etc.

We have a conservation law for organs of each blood type. This requires:

xO,O + xO,A + xO,B + xO,AB = oO

xA,A + xA,AB = oA

xB,B + xB,AB = oB

xAB,AB = oAB.

We suppose that the mechanism is fairest when the fraction of organs available for a given blood
type is as close as possible to the fraction of patients of this blood type. We introduce therefore some
variables to measure this. Let zt be the ratio of the fraction of organs available for blood type t and
the fraction of patients of blood type t.

zO =
xO,O

pO

zA =
xO,A + xA,A

pA

zB =
xO,B + xB,B

pB

zAB =
xO,AB + xA,AB + xB,AB + xAB,AB

pAB
.

To maximize fairness, we consider an egalitarian objective in which we maximize z =
min(z0,zA,zB,zAB). This can be solved in polynomial time using linear programming. Let’s consider
how this model fares on the historical Australian data. We have the following input data.

O A B AB
ot 0.473 0.393 0.101 0.033
pt 0.500 0.329 0.144 0.027

Maximizing fairness gives the following organ fractions.

xt1,t2 O A B AB
O 0.446 0.000 0.027 0.000
A 0.393 0.000 0.000
B 0.101 0.000

AB 0.033



And the corresponding z fractions.

O A B AB
zt 0.89 1.19 0.89 1.22

Because of the drowning effect of the minimum function, there are multiple solutions with the
same maximal minimum z value. To minimize transfer between blood types, we chose the solution
with the maximal number of decision variables xt1,t2 for t1 6= t2 set to zero. In this case, the only
organs matched across blood type are organ of blood type O which are matched with patients of
blood type B.

There are a number of ways we could translate this into practice. The simplest would simply be
to toss a coin when a new organ arrives to decide which groups of patients is used in its matching. In
this case, when an organ arrives of blood type O, with probability xO,O

oO
, we consider patients of blood

type O (that is, with probability 0.943), and otherwise (with probability 1− xO,O
oO

=
xO,B
oO

= 0.057) we
consider patients of blood type B. In short, with a 5.7% chance, we transfer an organ of type O to a
patient of type B, otherwise we match organs to patients of the same blood type.

Note that we have been unable to achieve complete fairness as the z values are not identical. We
can equalize the treatment of patients of blood type O and blood type B (that is, we can equalize
zO and zB). But these blood types are at a disadvantage compared to blood types A and AB (since
zA and zAB are larger). We cannot use the relative excess of organs of blood type A and AB to help
the relative excess of patients of blood type O and B. We simply need more organs of blood type
O and B to give to patients of blood type O and B. Blood type A is also at a slight disadvantage
compared to AB (since zA is smaller than zAB). We also cannot fix this problem by transferring
organs between blood types. This illustrates a fundamental impossibility to be fair to the different
blood types. As organs can only be transferred across blood type in one direction, there will be
online organ matching problems, like the one in Australia, where we cannot treat patients of different
blood type equivalently. Based on this analysis, we have advised the Organ and Tissue Authority to
consider a publicity campaign to increase donation of organs from members of the public with blood
types O and B.

A.2 Flow of Organs Between States, 2010–2014

Figure 6: Aggregate flow of organs between states and territories in 2014 if matching had been nationally.

B Additional Experimental Results
In this section we provide an analysis of stability and manipulation in practice, along with additional
graph and results related to the mechanisms.



B.1 Stability in Practice

Number of % patients ∆KDPI ∆KDPI% ∆EPTS ∆EPTS%
blocking pairs affected

M
IN Federal 121 (77) 1.1% (0.6) 4.5 (3.0) 15.0% (8.7) 4.7 (3.1) 14.1% (6.9)

State 378 (122) 6.0% (1.5) 12.0 (2.8) 27.5% (5.2) 12.4 (2.8) 22.8% (4.3)

B
O

X Federal 23,312 (1,664) 65.4% (1.4) 11.7 (0.4) 25.9% (0.8) 11.6 (0.4) 24.2% (0.9)
State 5,445 (398.1) 47.4% (1.4) 11.4 (0.4) 25.8% (0.9) 11.3 (0.4) 23.9% (1.0)

Table 2: Mean and standard deviation over 1000 trial of the total number of blocking pairs, percentage of total
patients that have incentive to form a blocking pair, absolute change in KDPI for the patient, percentage change
in KDPI for the patient, absolute change in EPTS for the kidney, and percentage change in EPTS for the kidney
under the MIN and BOX mechanisms. The Federal, MIN mechanism provides a significantly (p ≤ 0.05) more
stable match with a smaller window for improvement than all other mechanisms. Under the BOX mechanism
nearly 50% of patients have an incentive to form a blocking pair.

We now empirically check if the matching returned by the MIN or BOX mechanism is stable
in practice. A matching is stable if for every kidney (resp. patient) there is no other patient (resp.
kidney) to whom the kidney would prefer to be matched and that patient would prefer to be matched
to this kidney. Informally, there exists no kidney/patient pair that would prefer to leave the market
together rather than be matched. In this experiment we only consider strict stability, meaning that
both the kidney and the patient must strictly prefer each other to their current match.

Formally, a matching µ is a list of pairs (p,k) indicating that patient p is matched to kidney k.
We use the notation µ(k) to denote the patient matched to k and µ(p) to denote the kidney matched
to p. A matching is stable if there exists no pair (p,k) /∈ µ where k prefers p to its current match in
µ , i.e., p �k µ(p) where �k is the preference of k corresponding to the EPTS of p is strictly less
than µ(p). The definition is symmetric for patients.

In order to measure the stability of the matching returned by the two algorithms we search for
instances of blocking pairs that could be formed. For simplicity, we ignore patients who leave list
without a match as we do not know their ultimate fate. Many of these patients become to sick to
receive a transplant (or even die) so are unlikely to be a blocking pair. Others receive a satisfactory
kidney elsewhere so are also unlikely to be a blocking pair. To find blocking pairs we track the EPTS
of all patients until they would have aged out of the market, i.e., their EPTS exceeds 100. We ignore
the possibility that they could have been randomly removed in the window after they received their
match. Hence, our results are a worst case measure since there a patient may have left the market
earlier than the time taken to age out, decreasing opportunities to form a blocking pair.

For each patient/kidney pair (p,k) that is matched at time t, we check from t until p would have
aged out of the market if there arrived another kidney k′ that was matched to p′ where k′ �p k and
p �k p′. Hence, (p,k′) would have formed a blocking pair and the final match is not stable. We
assume that p would have won all tie-breakers over p′ but we assume that both the kidney and the
patient must strictly prefer to be part of the blocking pair. We track the mean number of blocking
pairs and the mean change (∆) that the patients and kidneys would have by blocking. Results are
given in Table 2.

In our experiments, the MIN mechanisms provide a significantly more stable matching for both
the State and Federal treatments (p ≤ 0.05) based on a t-test corrected for correlated samples [12].
The Federal, MIN matching has significantly fewer blocking pairs and significantly smaller room
for improvement for both the patients and kidneys compared to all other treatments. In addition,
under the Federal, MIN mechanism only ≈ 1% of patients could form a blocking pair, implying a
very stable match. Interestingly, the scope for improvement for the State, MIN and both treatments
of the BOX mechanism are very similar. We note that the matches returned by the BOX mechanism



are not very stable as nearly half the patients have opportunities to form blocking pairs that would
significantly increase the quality of their match.

B.2 Manipulation in Practice
We now consider strategic behavior on the part of the patients and doctors who, as in the case
in Germany, may misreport their EPTS. We focus on two questions: (1) How does lowering or
increasing the claimed EPTS impact on the quality of the matching? (2) How risky is misreporting
your EPTS as it might increase the chance of a matching, it may lower the quality of this match?

In the Germany scandal in 2012, doctors increased the apparent EPTS of their patients by mixing
blood in their urine samples. It is also possible for a lower EPTS to be reported than is sincere. For
instance, the guidelines of the Organ Procurement and Transplantation Network in the US remind
doctors of their duty to update reported EPTS scores when the status of patients change (e.g. they
receive a liver transplant, or they start dialysis). Intuitively, since both the MIN and BOX mechanisms
attempt to match low EPTS patients with low KDPI organs, we might expect that decreasing a
patient’s EPTS should be more often helpful than increasing it. Since misreporting the EPTS of a
patient by a large amount may be easily detectable, we consider a margin parameter such that an
insincere patient is allowed to claim any number between EPTS−margin and EPTS+margin.

In our experiments, we check for combinations of margin ∈ [1,100] and actions increasing,
decreasing, or both, computing the proportion of patients who could have improved their outcome
by claiming a different EPTS. In each case, we focus on the list of patients who obtained a match in
the truthful case. We report the mean proportion and standard deviation over 420 trials for margins
in {1,3,10,30,100} in Table 3.

Margin Increase Decrease Either

State
1 36.7±2.0 39.0±2.2 52.4±2.3
3 49.3±2.2 58.8±2.3 70.0±2.2

10 61.0±2.2 79.8±2.1 85.6±1.8
30 63.6±2.1 90.2±1.5 93.1±1.2

100 63.8±2.1 93.6±1.0 96.1±0.7

Federal
1 34.2±2.3 40.2±2.6 53.7±2.7
3 51.8±2.3 64.2±2.6 74.8±2.4

10 63.6±2.2 84.7±2.0 89.1±1.8
30 65.7±2.2 93.6±1.3 95.5±1.1

100 65.8±2.1 96.2±0.7 97.9±0.6

Table 3: Percentage of patients who could improve their assigned KDPI in MIN matching by adding, subtract-
ing, or either adding or subtracting up to “margin” from their true EPTS.

The results suggest, as might be expected, that increasing the misreporting margin increases the
proportion of patients who can improve the quality of their match. Decreasing the reported EPTS
offers more opportunity for improvement to more agents than increasing it. On the other hand, since
the “Either” column has higher proportions than the “Decrease” column, there are situations where
a small decrease in the reported EPTS cannot help, but an increase can. Finally, we observe that
strategic manipulation is easier in Federal, MIN than in State, MIN matching; this is not surprising
as, in a larger market, there is a bigger trade-off possible between efficiency and manipulability.

Even if we discard the “margin = 30” and “margin = 100” cases as unrealistic or unfeasible and
only look at “margin ∈ {1,3,10}”, the percentage of patients who could get a strictly better organ by
misreporting their EPTS is between 50% and 90%. To better understand incentives for manipulation,
we also look into the percentage of patients running the risk of being allocated a lower-quality organ



by mis-reporting their EPTS. Figure 7 gives the data for Federal, MIN and omits the similar curves
for the State matching for clarity. This graph shows that decreasing the reported EPTS is fairly
risk-free while potential having a positive impact on the allocated KDPI. Conversely, increasing the
reported EPTS may result in a match with a better organ, but not surprisingly it can also make things
worse.
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Figure 7: Proportion of patients whose allocated KDPI may change through their own manipulation as a func-
tion of the magnitude of EPTS misreporting, under Federal, MIN.

Although these experiments clearly show that the opportunity for strategic behaviour exists,
the opportunities in practice will not be as great. For example, our experiments suppose complete
information. In practice, doctors will not know the EPTS of all future patients yet to join the waiting
list, or the KDPI of all future organs.

B.3 Results on Participation
We examined if patients can strategically delay entrance into the market to improve their outcome.
To do this we took, for each of the 1000 iterations, the complete set of transplants made during that
iteration and checked if a patient could receive a kidney for which they had higher utility by declaring
a later arrival time. We took each patient p and checked if, in a future time step, a compatible kidney
arrives of better quality for p. If so, we check if p (1) could have arrived before p′ who received
the better kidney and (2) p would have had priority greater than or equal to that of p′ where priority
is determined by |KDPI−EPTS| for the MIN algorithm and by placement in the same equivalence
class for the BOX algorithm. If so than we say p could have delayed for an improvement in utility.
This is a worst case measure, we assume that p has full knowledge of all the kidneys that arrive in
the future and p wins tie breakers against p′.

Our results for participation are shown in Table 4, standard deviations over 1000 runs in paren-
thesis. The MIN algorithm is much less susceptible to manipulation from arriving later. This is due
to the large equivalence classes that are crated by the BOX mechanism, which offer more opportu-
nities for optimistic manipulation. Additionally, the magnitude of the improvement in KDPI of the
transplanted kidney is enormous for the BOX mechanism, indicating that arriving later can signifi-
cantly increase patient utility. Interestingly, we see an increase in the number of patients that could
manipulate in the MIN, State treatment. This is likely due to the smaller pools of patients and donors
which leads to an increased disparity between EPTS and KDPI of patient and donor, illustrated in
Figure 4, leading to an increase in the delay opportunity.

B.4 Waiting Time and Organ Flow Figures
In Figure 9b (moved to the appendix) we slice the mean waiting time data along the blood type
axis. This reveals another interesting property of online organ matching: different blood types get



Mean Num. Patients
Delay Improves

Mean Num. of Im-
provements/Patient

Mean Max Im-
provement in KDPI

MIN
Federal 138.2 (20.5) 2.7 (0.34) 3.0 (1.25)
State 269.3 (24.1) 2.5 (0.31) 9.2 (2.45)

BOX
Federal 960.5 (29.9) 169.5 (7.1) 50.9 (0.93)
State 928.8 (31.6) 40.6 (2.1) 49.6 (1.00)

Table 4: The mean number of patients who can delay and improve their received organ, the mean number of
improvements per patient, and the mean of the maximum improvement a patient could see for all 1000 iterations
(standard deviation) for the four algorithmic treatments. The MIN, Federal algorithm often achieves allocations
where KDPI=EPTS which affords few opportunities for strategic participation.

treated very differently. Those patients with type O blood, the most common amongst the types,
track very closely to the waiting times see in Figure 9a while those with type AB blood have strictly
lower waiting times. This is due to the small number of AB patients that require transplants and their
ability to accept kidneys of any type.



(a) The majority of organs are transplanted within the state of donation.

(b) With the MIN, Federal treatment, 99% of agents receive an organ where |KDPI−EPTS| < 5. Agents with a
higher |KDPI−EPTS| are almost all waiting for a rare AB organ.

Figure 8: In (a) we show the average over 1000 iterations of the flow of organs between states and blood types;
error bars represent one standard deviation. In (b) we show the Cumulative distribution function (CDF) of
|KDPI−EPTS|. The vertical axis shows the percentage of patients who have a |KDPI−EPTS| below the value
on the horizontal axis.



(a) Mean time on list for all states (left) and for NSW/ACT (right).

(b) Mean time on list for type O (left) and type AB (right).

Figure 9: In (a) we see that MIN gives lower average waiting times and that the difference between State and
Federal allocations is negligible. In (b) Blood type O is the most common and thus the waiting times track
closely to the overall mean while the rarest blood type AB does not.
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