
Bribery in Voting Over Combinatorial Domains Is Easy

Nicholas Mattei
Deptartment of Computer Science

University of Kentucky, USA
nick.mattei@uky.edu

Maria Silvia Pini, Francesca Rossi, and K. Brent Venable
Department of Pure and Applied Mathematics

University of Padova, Italy
{mpini,frossi,kvenable}@math.unipd.it

Abstract

We investigate the computational complexity of finding op-
timal bribery and manipulation schemes in voting domains
where the candidate set is the Cartesian product of a set of
variables and agents’ preferences are represented as compact
CP-nets. We find that this change in the domain structure,
which may lead to an exponential number of candidates in the
size of the input, causes many existing computational results
for bribery to break down. We provide new algorithms and
complexity results which show that, in most cases, bribery
in combinatorial domains is easy. This also holds for some
cases of k-approval, where bribery is difficult in traditional
domains.

Introduction
We study the computational complexity of the bribery prob-
lem in voting domains where the set of candidates has a
combinatorial structure and is exponentially large in the size
of the input.

It is often natural to express group decision problems as
the combination of a sequence of decisions. This method
is used in many settings, from the United States Congress
(specifically, votes for amendments to a bill) to a group of
friends deciding what appetizer, main course, desert, and
wine should be served for a group meal (Lang and Xia 2009;
Brams, Kilgour, and Zwicker 1998). In all these cases,
agents express preferences and vote on parts of the over-
all decision to be taken. Moreover, agents may have depen-
dent preferences within this construction: the choice of wine
may depend on the choice of main course for the meal. We
consider a scenario where agents use the CP-net formalism.
This allows the agents to compactly represent their prefer-
ences over many issues that may have conditional depen-
dencies (Boutilier et al. 2004).

Bribery and manipulation directly question the security
and robustness of an election system. They are ways that
agents (outside or inside an election) can affect the elec-
tion’s outcome. In particular, the bribery problem is when
an outside agent with a limited budget attempts to affect
the outcome of an election by paying some of the agents
to change their preferences. This problem was introduced
to computational social choice by Faliszewski et al. (2009;
2008) and has become a metric by which the security of elec-
tion rules is judged. If it is computationally difficult to find

an optimal bribery in elections decided by a certain voting
rule, we can say that the rule is resistant to bribery. Manip-
ulation, instead, is when one or more voters attempt to vote
strategically in order to affect the result of the election. Its
complexity was first studied by Bartholdi et al. (1989) with
further by Conitzer et al. (2007) and is another metric for
election security. Both of these problems have been stud-
ied extensively in computational social choice. However,
the literature is sparse when elections have combinatorially
structured domains.

When voting is structured as the combination of several
decisions, one natural method to determine a winner is to
decide on an issue-by-issue basis, while the other natural
approach is to aggregate the agents’ votes over the set of
all combinations of values of issues. In this paper we con-
sider both approaches. In particular, we study elections via
sequential (that is, issue-by-issue) majority (SM), plurality
(OP), veto (OV), and k-approval (OK).

Unlike previous studies on bribery, CP-nets do not lend
themselves to the convention that the cost of bribery is re-
lated to the number of swaps in the candidate ordering as
proposed by Elkind et al. (2009). In fact, we don’t want
to work on the outcome ordering, since it is exponentially
large, but on the CP-net. Since a single swap in a CP-net can
lead to a large change in the outcome ordering, we consider
three different bribery cost schemes: CEQUAL (any amount
of change in a CP-net costs the same), CFLIP (the cost is the
number of flips in the CP-net), and CLEVEL (the cost is the
number of flips weighted by their position within the CP-
net). Additionally, the use of acyclic CP-nets to denote pref-
erences leads to instances where some voters, depending on
their preference dependencies, cannot be bribed to vote for
any arbitrary candidate. This restriction, along with the ex-
ponential number of candidates, breaks some of the existing
algorithms for bribery and manipulation.

We show that bribery for OP and OV is always easy, while
bribery for OK is easy when k is a power of 2. This last re-
sult is particularly surprising at first sight, since bribery for
k-approval in a non-combinatorial setting is difficult. How-
ever, this result is due to the fact that a profile of compat-
ible acyclic CP-nets is not fully expressive, and there is a
strong relationship among the preference orderings of such
CP-nets. For SM, we prove that bribery is easy except when
we use CEQUAL. However, when voters are weighted, bribery

for SM is always difficult. We also provide results about ma-
nipulation and show that it is easy for SM and OP. Addition-
ally, we provide results on bribery with non-binary issues.
In this last setting, voting on a single issue can be performed
by any rule (not just majority), so the complexity of both the
bribery and the manipulation problem depends on the com-
plexity of the voting rules used for the issues.

Basic Notions
CP-Nets
A major challenge for computational social choice is de-
scribing agent preferences in domains where there is a large
number of candidates. AI provides several formalisms to do
this including CP-nets (Boutilier et al. 2004), the one we
consider in this paper.

CP-nets (Boutilier et al. 2004) are a graphical model for
compactly representing conditional and qualitative prefer-
ence relations. CP-nets are sets of ceteris paribus prefer-
ence statements (cp-statements). For instance, the statement
“I prefer red wine to white wine if meat is served.” asserts
that, given two meals that differ only in the kind of wine
served and both containing meat, the meal with red wine is
preferable to the meal with white wine.

Formally, a CP-net has a set of issues F = {x1, . . . ,xn}
with finite domains D(x1), . . . ,D(xn). For each issue xi, we
are given a set of parent issues Pa(xi) that can affect the
preferences over the values of xi. This defines a dependency
graph in which each node xi has Pa(xi) as its immediate pre-
decessors. Given this structural information, preferences are
specified over the values of xi for each complete assignment
on Pa(xi). These preferences take the form of a total order
over D(xi). An acyclic CP-net has an acyclic graph.

Consider for example a CP-net whose issues are A, B, C,
and D, with binary domains containing f and f if F is the
name of the issue, and with the following cp-statements: a�
a, b � b, (a∧ b)∨ (a∧ b) : c � c, (a∧ b)∨ (a∧ b) : c �
c, c : d � d, c : d � d. Here, statement a � a represents
the unconditional preference for A = a over A = a, while
statement c : d � d states that D = d is preferred to D=d,
given that C = c.

We say that a CP-net is compact if the maximum number
of parents of a feature is bounded from above by a constant.
This implies that the number of outcomes is exponential in
the size of the CP-net.

The semantics of CP-nets depend on the notion of a wors-
ening flip. Given a complete assignment of all issues, called
an outcome, a worsening flip is a change in the value of an
issue to a less preferred value according to the relevant cp-
statement for that issue. For example, in the CP-net above,
passing from abcd to abcd is a worsening flip since c is bet-
ter than c given a and b. One outcome α is better than an-
other outcome β (written α � β) if and only if there is a
chain of worsening flips from α to β . This definition in-
duces a preorder over the outcomes, which is a partial order
if the dependency graph of the CP-net is acyclic.

In general, finding the optimal outcome of a CP-net is
NP-hard (Boutilier et al. 2004). However, in acyclic CP-
nets, there is only one optimal outcome, which can be found

in linear time by sweeping through the CP-net following the
directed arcs of its dependency graph and assigning the most
preferred values in the cp-statements. For instance, in the
CP-net above, we would choose A= a and B= b, then C = c,
and then D = d.

In an acyclic CP-net it is also easy, given an outcome, to
find the next best outcome in a linearization of the induced
outcome ordering (Brafman et al. 2010). Thus, finding the
top k solutions is easy if k is bounded.

It should be noted that, given a set of issues, domains, and
an outcome, there is always a CP-net that has such an out-
come as the optimal one. However, given issues, domains,
and an outcome ordering, there could be no CP-net whose
induced outcome ordering coincides with the given order-
ing. In fact, CP-nets cannot model all outcome orderings.
For example, two outcomes differing for the value of one is-
sue must be necessarily ordered in the preorder induced by
a CP-net.

Voting
Voting theory (Arrow, Sen, and Suzumura 2002) is a wide
research area that considers scenarios where a collection of
voters (that we sometimes call agents) vote by expressing
their preferences over a set of candidates (that we sometimes
call outcomes), and a voting rule decides the winner. Vot-
ing theory provides many voting rules to aggregate agents’
preferences. Each rule takes, as input, a partial or complete
preference ordering of the agents and gives, as output, the
winner (the outcome that is best according to the rule). If
there are only two candidates, the best rule, according to
many criteria, is majority voting (May 1952). When there
are more than two candidates, there are many voting rules
one could use (Plurality, Borda, STV, approval, etc.), each
with its advantages and drawbacks. In this paper we con-
sider the following rules:

Plurality: the candidate ranked in first place receives one
point. The candidate(s) with the most points win the elec-
tion. When there are two candidates, plurality coincides
with majority.

Veto: Each voter chooses a candidate to veto. The candi-
date(s) with the least number of vetoes wins.

k-approval: Each voter approves of k out of m candidates
(k ≤ m) and disapproves of the remaining candidates. Can-
didate(s) with the most points win the election.

Voting theory provides an axiomatic characterization of
voting rules in terms of desirable properties such as: the ab-
sence of a dictator; unanimity; anonymity; neutrality; mono-
tonicity; independence of irrelevant alternatives; and resis-
tance to manipulation and bribery. In this paper we focus on
bribery, with some results for manipulation.

Given a profile, a briber is an outside agent that wants to
affect the result of the election by convincing some agents
to change their votes so that a preferred candidate wins (Fal-
iszewski, Hemaspaandra, and Hemaspaandra 2009). The
briber can convince agents by paying them and is usually
subject to a limitation of its budget. Later in the paper we
formally define the kind of bribery problem we consider.

Manipulation is a closely related problem to bribery. Ma-
nipulation occurs when a subset of the agents can get a better
outcome by misreporting their preferences. More formally,
in the Constructive Coalitional Manipulation (CCM) prob-
lem (Conitzer, Sandholm, and Lang 2007) we are given a set
of agents X with fixed votes, a set Y of agents with unfixed
votes, and a candidate p. We ask if there is an assignment
of votes to the agents of Y such that running the election on
the profile X ∪Y results in p winning the election. Certain
forms of the manipulation problem can therefore be seen as
bribery problems where the agents which can modify their
vote are fixed and the budget is unlimited.

While every reasonable voting rule is manipulable (Ar-
row, Sen, and Suzumura 2002), a rule may be said to
be resistant to manipulation if it is computationally diffi-
cult to decide how to manipulate. This has led to inten-
sive studies of the computational properties of both bribery
and manipulation for a variety of voting rules and infor-
mation assumptions including manipulation results for CP-
nets (Conitzer, Lang, and Xia 2009; Faliszewski, Hemas-
paandra, and Hemaspaandra 2009; Conitzer, Sandholm, and
Lang 2007; Xia and Conitzer 2010).

Voting with CP-nets
The setting we consider consists of a set of n agents express-
ing their preferences over a common set of candidates. The
candidate set has a combinatorial structure: there is a com-
mon set of m binary issues and the set of candidates is the
Cartesian product of their domains. Each candidate is an as-
signment of values to all issues, thus we have 2m candidates.

Each agent expresses its preferences over the candidates
via a compact acyclic CP-net. Moreover, there exists a total
ordering O over the issues such that, in each CP-net, each
issue must be independent of all issues following it in the
ordering O.

A profile (P,O) is a collection P of n CP-nets over m com-
mon issues and a total ordering O over the issues which sat-
isfies the above property. This is called an O-legal profile
by Lang (2007). Notice that the CP-nets appearing in such
profiles do not necessarily have the same dependency graph.

To define a voting scheme over O-legal profiles Lang
(2007) proposes a sequential approach where, at each step,
agents vote over a single issue by using a chosen voting rule.
This voting scheme is based on a total order over the issues
that is compatible with the (acyclic) dependency graphs of
the CP-nets: in each CP-net, each issue must be independent
of all issues following it in the ordering. After each vote, a
value is selected for the considered issue, and this choice
is returned to all the agents who include this information in
their CP-net. After as many steps as the number of issues,
the winner outcome is built by collecting all the winning
values for each issue. In this paper we consider a sequential
approach but we also examine a one-step approach which
computes the winner by considering all the CP-nets at once.

Bribery Problem Definition
The bribery problem we consider has three parameters: the
way a winner is chosen from the given profile, the allowed
bribery actions, and the cost scheme for such actions.

Winner Determination
In this paper we consider profiles consisting of CP-nets, as
defined in Section . Such CP-nets have the same issues but
possibly different dependency graphs and cp-statements. We
assume that all issues are binary. To determine the winner
outcome, we consider two approaches:

Sequential Majority (SM): This is basically Lang’s se-
quential procedure (Lang 2007) when instantiated on binary
issues. We vote for each issue in the ordering O using major-
ity (since issues are binary). The value chosen for an issue is
then returned to all agents who then fix the issue to that value
in their respective CP-nets. When voting has completed on
all issues, the winner outcome consists of the issue instanti-
ation chosen by majority at each of the voting steps.

One-step Plurality (OP): We ask each agent to provide the
optimal outcome in his CP-net and we use plurality to decide
which of these outcomes is the winner.

We will also consider other variants of the second method,
where instead of plurality we use the veto rule and the k-
approval rule. We denote them by OV (for One-step Veto)
and OK (for One-step k-approval). Using these voting rules
means that agents needs to provide the worst outcome and
the top k outcomes, respectively.

It is worthwhile to clarify our notion of an agent: an agent
is only a CP-net handler. He has the ability to specify a CP-
net over a given set of binary issues and to compute the opti-
mal outcome, the top k outcomes, and the worst outcome of
his CP-net. He does not handle the explicit partial order over
all the outcomes of the CP-net, but just the CP-net, which is
a compact representation of the ordering.

Bribery Actions
In most bribery frameworks agents express their preferences
over the candidates via a total order, and the briber asks
agents to make any changes within this total order. In our
domain, agents have a CP-net instead of an explicit out-
come ordering. If the briber could ask for any change in
the ordering induced by the CP-net, some of these changes
could be computationally hard or impossible to accomplish
via changes in the CP-net. Therefore, we define the bribery
actions as changes made directly to the cp-statements within
the CP-net of an agent. Since a cp-statement gives a total
order for the domain of an issue the briber asks for a new
total order over the domain. In this paper we consider bi-
nary issues, so changing a cp-statement means flipping the
positions of the two values of an issue.

In a CP-net, a cp-statement is associated to a certain issue,
and issues are of two kinds: independent and dependent. We
distinguish bribery actions on these two kinds of issues:

Independent Variable Bribery (IV): The briber sets a new
total order in a cp-statement related to an independent issue.

Dependent Variable Bribery (DV): The briber sets a new
total order in a cp-statement related to a dependent issue.

We will also consider the combination of both such
bribery actions, that we will denote by IV+DV. Notice that
with these bribery actions no dependency can be added in

the CP-nets. Thus, the new CP-nets are still compatible with
one another and with the ordering O over the issues.

Cost Schemes
In classical bribery domains, the pricing of the bribery ac-
tions is either fixed (that is, the same price for any new total
order), or it depends on the number of swaps to be performed
on the current total order to obtain the desired one. We be-
lieve that this second approach, the swap bribery approach
introduced by Elkind et al. (2009), is a better model of the
amount of resources needed to achieve the change asked for
by the briber. In one of our cost schemes we use the swap
model, although swaps are in the cp-statements and not di-
rectly on the outcome ordering.

When preferences are modeled via CP-nets, the structure
of the CP-net should come into play. To define this more
precisely, let us partition the issues of a CP-net into levels,
which we define recursively as:

level(x)=

1 If x is an independent issue.
i+1 If all parents of x are in levels {1, . . . , i}

and there is a parent in level i.
(1)

It is possible to see that changing a cp-statement asso-
ciated to an issue in a lower level causes a larger overall
change in the outcome ordering. Therefore, such a change
should cost more. For example, consider a CP-net with two
issues, A and B, where B depends on A, and with the fol-
lowing cp-statements: a � a, a : b � b, a : b � b. The out-
come order induced by this CP-net is: ab > ab > ab > ab.
If we change the cp-statement over A to a � a, we get
ab > ab > ab > ab. If we measure the difference between
two orderings by the number of outcome swaps needed to
pass from one ordering to the other then in this example the
difference is 4. If instead we change the second cp-statement
over B to a : b� b, thus making B independent of A, we get
a partial order with ab at the top, ab at the bottom, and the
other two outcomes incomparable in the middle. Since this
is a partial order, we count the difference with the original
ordering by the maximum number of outcome swaps to ob-
tain a linearization of the partial order. In this case, 2.

In this paper we consider three cost schemes, start-
ing from the simplest one (that closely mimics traditional
bribery) and moving towards more complex bribery pricing
schemes that take into consideration the CP-net formalism.
CEQUAL: A unit cost allows to make any number of changes
in a CP-net.
CFLIP: The cost of changing a CP-net is the number of flips
performed in total in its cp-statements.
CLEVEL: The cost of changing a CP-net is the number of
flips performed in total in its cp-statements, each weighted
according to the level of the relevant issue. More precisely:
∑x f lip(x)× (k+ 1− level(x)), where x ranges over the is-
sues and k is the number of levels in the CP-net, and f lip(x)
is the number of flips performed in cp-statements associated
to x. We expect the weights to be greater at the lower (more
influential) levels (Boutilier, Bacchus, and Brafman 2001).

Each of the above cost schemes can be generalized to ac-
count for agents with different bribing costs by associating
a certain cost to each agent and multiplying the cost of the
bribery actions with the agent’s cost. In the following we
only consider the generalized versions of the cost schemes.
We denote with Qi ∈ Z+ the bribing cost of agent i.

In many variations of both the bribery and manipula-
tion problems it is standard to attach weights to the vot-
ers (Faliszewski, Hemaspaandra, and Hemaspaandra 2009;
Conitzer, Sandholm, and Lang 2007). These weights are
usually regarded as either representing a group of voters who
all think alike or instances, such as shareholder votes for
publically traded companies, where not all voters are con-
sidered equal. We assume that each agent i ∈ n is assigned a
weight, wi ∈ Z+, that represents the weight of that agent.

Combinatorial Bribery
We now formally state the bribery problem:
Name: (D,A,C)-Bribery.
We are given:
–A profile (P,O) where P is a collection of n compact CP-
nets with m binary issues and O is a total ordering of the m
issues;
–a budget B ∈ Z+;
–an outcome p, that is a complete assignment to all m issues;

–and bribing cost vector ~Q.
Question: Is there a way for an outside actor to make p
win in profile (P,O) with winner determination rule D ∈
{SM,OP,OV,OK}, by using bribery actions according to
A ∈ {IV,DV, IV +DV}, and by paying according to scheme
C ∈ {CEQUAL,CFLIP,CLEVEL} and bribing cost vector ~Q, with-
out exceeding B?

We now study the computational complexity of this prob-
lem, considering all possible combinations of winner deter-
mination rules, bribery actions, and cost schemes.

In this paper we assume, as in other works on bribery such
as Elkind et al. (2009) and Faliszewski et al. (2009), a non-
unique winner model; we are only asked to elevate p into
the winning set. Some of our reductions can be extended to
any unique winner model but we focus on the general case.

Winner Determination Is Easy
The computational complexity of the bribery problem is in-
teresting only when it is easy to determine the winner of an
election, since otherwise bribery would be trivially hard. We
thus show that this is the case for all the winner determina-
tion approaches we consider.

Theorem 1 Winner determination is in P for SM, OP, OV,
and OK (when k is bounded).

Proof. Sequential Majority (SM) works issue-by-issue,
and at each issue it applies the majority voting rule. As there
are a limited number of issues, the overall procedure is in P.

For One-step Plurality (OP), we need to compute the opti-
mal outcome for each CP-net, which is polynomial since we

are dealing with acyclic CP-nets. Then, plurality is applied,
and this again is a polynomial step.

The winner according to One-step Veto (OV) can be
achieved by reversing each total order in all cp-statements
of the CP-nets. In fact, by doing this, the optimal outcome
of the new CP-net is the worst outcome of the original one.
Notice that in an acyclic CP-net we have exactly one worst
outcome. This reversal step takes polynomial time in the
size of the CP-nets since they are compact. After the re-
versal step, we just choose an outcome which appears the
smallest number of times (possibly zero) as the optimal out-
come of the reversed CP-nets. This again takes polynomial
time with respect to the size of the input.

One-step k-approval (OK) needs to get the top k outcomes
from each CP-net. If k is bounded, this is easy since the CP-
nets are acyclic (Brafman et al. 2010). Therefore, providing
the ballots is polynomial, as is applying k-approval. q

Changing a Vote Is Easy
In the classical bribery scenario, the cost of bribing a single
agent so that he votes for another candidate is straightfor-
ward to compute since agents specify their preferences ex-
plicitly In our scenario, the use of CP-nets makes this com-
putation not as trivial. However, we show that it is still easy
to do, no matter which bribery actions or cost schemes we
use. The main difference is that it is sometimes impossible
to achieve the desired vote change because of restrictions on
the bribery actions.
Theorem 2 Given a CP-net and an outcome p, determining
if the CP-net can be changed to make p its optimal outcome,
and, if so, determining the minimum price to perform such a
change, can be computed in polynomial time.
Proof. Assume we can use all bribery actions, IV +DV ,
therefore, any CP-net can be changed to a vote for p.

With CEQUAL, it is trivial to compute the cost, as it does
not depend on changes to the CP-net: if p is already the top
outcome of the CP-net, the cost is 0, otherwise it is 1.

With CFLIP, we need to compute the minimum number of
flips to be done on the CP-net. There are some flips that
are necessary to make p the top outcome. In order to find
them, we start from the independent issues and we flip their
cp-statements which do not have the corresponding value of
p as their preferred value. We then proceed to each depen-
dent variable, as soon as its parents are processed, and do
the same in its relevant cp-statement. At the end, p is the
top outcome in the resulting CP-net. The number of flips
performed gives us the minimum price to make p win. If we
use CLEVEL, the flips are the same as above but the total cost
takes into account the levels.

Notice that this algorithm gives us the minimum set of
flips, but the same result could be achieved also by perform-
ing other useless flips. However, what we are interested in
is computing the minimum cost to change the CP-net.

If we are only allowing one kind of bribery actions, IV
or DV, we may stop the procedure as soon as a required flip
cannot be done, since this means that p cannot be the opti-
mal outcome for the CP-net with the allowed change actions.
q

Sequential Majority
In this section we consider the computational complexity of
bribery when we determine the winner via sequential ma-
jority. The first result shows that, when we use the cost
schemes CFLIP or CLEVEL, the bribery problem is computa-
tionally easy.

Theorem 3 (SM,IV,C)-Bribery, (SM,DV,C)-Bribery, and
(SM,IV+DV,C)-Bribery are in P when C ∈ {CFLIP,CLEVEL}.

Proof. We first show a polynomial time algorithm for
solving (SM, IV +DV,CFLIP)-Bribery.

Given a profile (P,O), we consider the issues according
to the ordering given by O. Beginning with the first issue in
an ordering, we can compute the minimum number of flips
to be performed in the agents’ CP-nets in order to achieve a
majority for the same value that appears in p for that issue.
Since we are using SM, we just need to select the agents to
bribe by starting from the cheapest ones (according to ~Q),
until we achieve a majority for the considered issue.

In fact, by SM, the resulting preferred value for this issue
will be propagated in all CP-nets (not just those where this
value was most preferred). In the next level, and in all subse-
quent levels, we perform the same computation. At the end,
when all issues have been considered, the overall number of
flips (required to get the correct majority for each issue) will
determine the cost of bribing so that p wins. The total cost
is ≤ B if and only if the bribery problem has a solution.

If we use the cost scheme CLEVEL instead of CFLIP, the
choice of which agents to bribe for each issue is dictated
not only by the bribing cost vector, but also by the level of
the issue in the CP-nets. Notice that the same issue could
appear in different levels in the agents’ CP-nets.

A very similar algorithm can also be used for IV and DV
bribery actions with the restrictions on which cp-statements
can be flipped. With IV, for each issue, we are allowed to
perform a flip only in those CP-nets that have the particular
issue as independent. With DV, we can only flip issues in
CP-nets that have the particular issue as dependent. q

The above theorem considers only the costs schemes CFLIP

and CLEVEL. The reason is that, with these cost schemes, we
compute the cost by counting the number of flips (either with
a weight or not), so the flips we perform for one issue do not
pose any restriction to the flips we perform for another issue.
With CEQUAL, instead, the cost for changing a CP-net is al-
ways 1, no matter how many flips are needed. Therefore, the
decision on which CP-nets to change for a particular issue is
strictly related to this same decision for another issue: if we
change the same CP-nets, the cost will not increase. So, to
compute the minimum bribery cost, the computation we do
for one issue depends on the computation for a different is-
sue. This makes the bribery problem computationally hard,
as the following theorem formally shows.

Before stating and proving the theorem, we need to con-
sider the OPTIMAL LOBBYING (OL) problem (Christian et
al. 2007).
We are given: An n×m 0/1 matrix E and a 0/1 vector ~x
of length m where each column of E represents an issue and

each row of E represents a voter. E is a binary approval
matrix with 1 corresponding to a “yes” vote and ~x is the
target group decision.
Parameter: A positive integer, k: the number of agents to
be influenced.
Question: Is there a choice of k rows of the matrix E such
that these rows can be edited so that the majority of votes in
each column matches the target vector~x?

This problem is shown to be W [2]-complete (Christian
et al. 2007). We give a polynomial reduction from OL to
our bribery problem, thus showing that it is NP-complete
(Downey and Fellows 1999). In fact, since OL is W [2]-
complete for parameter k, all the bribery problems in the
following proof are W [2]-hard with parameter B.
Theorem 4 (SM, IV,CEQUAL)-Bribery, (SM,DV,CEQUAL)-
Bribery, and (SM, IV +DV,CEQUAL)-Bribery
are NP-complete.
Proof. For all bribery problems, membership in NP is an
immediate consequence of Theorem 1 and a guess and check
algorithm. To show completeness, we provide polynomial
reductions from OL. We start with (SM, IV,CEQUAL)-Bribery.

Given an instance (E,~x,k) of OL, we can construct an in-
stance of (SM, IV,CEQUAL)-Bribery containing CP-nets with
only independent variables. The set of issues, m, is equal to
the number of columns in E. For each row of E, we create a
voter with the preferences over the m variables as described
in the row of E. Finally, we set the price of bribery for each
voter to be 1, the budget B = k, the weights of the agents all
equal, and the preferred outcome p =~x.

Thus, p wins the election if and only if there is a selection
of k rows of E such that ~x becomes the winning agenda of
the OL instance. Therefore (SM, IV,CEQUAL)-Bribery is NP-
complete. The same reduction works for IV+DV.

For DV, we choose an instance of the bribery problem as
above, except that there is one more issue and each voter
therefore has an additional independent variable on which
all others depend. The preference of all voters on the new
variable is 1¿0. For the other variables, the corresponding
row of E will provide the preference associated to the value
1 of the new variable, while for the value 0 we give the oppo-
site preference. The last difference is that now p is 1~x. With
this mapping, p wins the election if and only if the given OL
instance has a positive answer. q

We now turn our attention to weighted agents. The win-
ner of the election will be computed by a weighted majority
for each issue. We prove that bribery with the CLEVEL and
CEQUAL cost schemes is computationally difficult, while it is
easy with CFLIP. We denote by weighted-X the bribery prob-
lem X with weighted agents.

Faliszewski et al. show NP-completeness of a problem
called plurality-weighted-$bribery (Faliszewski, Hemas-
paandra, and Hemaspaandra 2009). In such a problem each
candidate ci is associated with a price $i ∈ Z+ and weight
wi ∈ Z+, the voting rule used is plurality. The problem is
to determine if a favorite candidate x can be made a winner
by bribing voters within a budget k. In fact, Faliszewski et
al. show this problem to be NP-complete for only two can-
didates; we will use this result in the following theorem.

Theorem 5 Weighted-(SM,A,C)-Bribery where
A ∈ {IV, IV +DV} and C ∈ {CEQUAL,CFLIP,CLEVEL} is NP-
complete.
Proof. Membership in NP is an immediate consequence
of Theorem 1 and a guess and check algorithm. We can re-
duce the plurality-weighted-$bribery problem over two can-
didates to an instance of our problem where we have the
same number of voters; the same costs and weights; and
the same budget as the original problem. Moreover, there
is only one issue and, thus, the voters have a single inde-
pendent variable with two values corresponding to the two
candidates, one of which, say p, corresponds to x. On a pro-
file of this kind all the cost schemes act the same and so do
the bribery actions IV and IV +DV . q

The following theorem follows, we omit the proof.
Theorem 6 Weighted-(SM,DV,C)-Bribery where
C ∈ {CEQUAL,CFLIP,CLEVEL} is NP-complete.

However, if we use the cost scheme CFLIP and we assume
that the bribing costs are the same for all voters, the bribery
problem becomes easy.
Theorem 7 Weighted-(SM,IV,CFLIP)-Bribery, weighted-
(SM,DV,CFLIP)-Bribery, and weighted-(SM,IV+DV,CFLIP)-
Bribery are in P when the bribing costs in ~Q are all the same.
Proof. We can use the same argument as in the proof of
Theorem 3. Since voters are weighted, we only need to
achieve a weighted majority for each individual issue. Since
all the bribing costs at each level are the same with the CFLIP

pricing function, the cost to bribe any voter at any single
level is equal for all voters. We can therefore bribe the vot-
ers from heaviest to lightest (in terms of their weight). This
will be an optimal sequence of bribes at each individual level
and lead to the optimal bribery scheme overall.

This is true no matter which bribery actions are allowed,
since using IV or DV just restricts the issues over which it is
possible to perform a flip in the CP-nets. q

One-step Plurality
The model presented in this paper with cost function CFLIP

and CLEVEL is similar to the nonuniform bribery model
presented by Faliszewski (Faliszewski 2008). Faliszewski
shows that bribery in single issue elections with nonuniform
cost functions is in P through the use of flow networks. The
algorithm requires the enumeration of all possible elements
of the candidate set as part of the construction of the flow
network. In our model, the number of candidates is expo-
nential in the size of the input, so we cannot use that con-
struction directly. However, we show that a similar tech-
nique to that of Faliszewski can be used while not requir-
ing the enumeration of an exponential number of candidates
(Faliszewski 2008).
Theorem 8 (OP,IV,CFLIP)-Bribery is in P when all variables
are independent in all CP-nets of the profile.
Proof. If the number of candidates, which is 2m, is poly-
nomial in the number of voters (n), we can the proof by Fal-
iszewski (Faliszewski 2008). So we assume that we have a
number of candidates such that 2m > 2n.

For a candidate v and a positive integer d, let neb(v,d)
be the set of candidates that can be obtained starting from
v by changing d issues. Let G be the set of candidates who
receive 1 or more votes. Let score(v) denote the number of
votes for candidate v. Note that the number of candidates
with nonzero scores is at most n.

For all c ∈ neb(p,1)∩G at cost |neb(p,1)∩G|, we can
safely change them to votes for p. If, after this step we have
∀g ∈ G : score(g) ≤ score(p) and |neb(p,1)∩G| ≤ B then
we accept. Likewise, if B > (n

2 − 1) ·m, then we can afford
bribe half the voters to vote for p and we accept.

We now consider all r ∈ {1, . . . ,n} and ask if p can be
made a winner with exactly r votes without exceeding B. If
there is at least one r such that this is possible, then we ac-
cept, otherwise we reject. We show that, for each r, the cor-
responding decision problem can be solved in polynomial
time. This means that the overall bribery problem is in P.

To solve the decision problem for a certain r, we reduce
this problem to a minimum-cost flow problem (Ahuja, Mag-
nanti, and Orlin 1993). In detail, we build a network with a
source s, a sink t, and three “layers” of nodes.

The first layer of nodes has one node for each voter
v1, . . . ,vn. We also add n edges (s,vi), all with capacity 1
and cost 0.

The second layer of nodes represents a subset of the can-
didates. In order to define the subset, we need to introduce
the notion of a safe candidate. A candidate g will be con-
sidered safe if score(g) ≤ score(p)− 1. For each voter not
voting for p in the given profile, we add n nodes correspond-
ing to its top outcome and additional n− 1 safe candidates
that are closest to the optimal outcome for that voter. Notice
that we are sure there are at least n−1 safe candidates, since
2m > 2n and at most n−1 candidates have some vote.

To find such safe candidates, we exploit the voter’s CP-
net by visiting its outcome ordering starting from the top
outcome and moving down in one linearization of the order-
ing, skipping those candidates that are not safe. Since the
CP-nets are acyclic, each step is polynomial (Brafman et al.
2010). Moreover, at most we need to perform 2n− 1 steps
to find n− 1 safe candidates, since between any two safe
candidates there can be at most n−1 unsafe ones.

To this set of safe candidates we add, edges so that each
voter can also vote for p and the n candidates who currently
receive votes. Therefore, each voter can change their exist-
ing vote to p (always safe). This second layer models the
profile modified by the bribery: each voter can change its
vote or also maintain the previous one.

For each node in the second layer, say Si j, corresponding
to voter vi, we add an edge from vi to Si j with capacity +∞

and cost equal to the cost to bribe vi to vote for the candidate
corresponding to node Si j.

In the third layer of the network, we add a node for each
candidate who already appears somewhere in the network
(up to n2 − n). One of these nodes, say f1, represents p.
These will be the nodes that enforce the constraint that every
candidate besides p cannot receive more than r votes. These
nodes will have an edge from the nodes of the second layer
representing the same candidate, where the edge has zero
cost and infinite capacity. The output link from each node in

the third layer to the sink has capacity r. The cost is 0 for the
edge from f1 to the sink, while it is a integer M higher than
any possible bribery for all other nodes of the third layer.

Notice that in the second layer we just add, for each voter,
nodes corresponding to n candidates, so we do not allow
voters to move their vote to a candidate which is not safe
and farther away from its top candidate in terms of cost. This
allows us to avoid an exponential number of nodes.

If we had included nodes for all the candidates in the sec-
ond layer, we would have used a network equivalent to the
one used in the proof of Theorem 3.1 in (Faliszewski 2008),
which shows that there is a minimum cost flow of value n
if and only if there is a way to solve the bribing problem.
However, since we have a number of candidates which is
exponential in the size of the input, we would not have a
polynomial algorithm.

However, by including just the cheapest n alternative can-
didates for each voter such a result still holds. In fact, as-
sume there is a minimal flow in the larger network which
goes through one of the added nodes. This means that a
voter has been forced to vote for another candidate since all
its top n safe candidates had already r votes each. However,
this is not possible since we have only a total of n−1 votes
that can be given by the other voters.

We will build, at worst, n networks with 2n2+n+2 nodes
and 2n2 + 2n edges. We can solve a min cost feasible flow
problem in time O(|V ||E| log(|V |)). Therefore the overall
running time of this method is polynomial. q

This leads to the following corollaries (proofs omitted).
Corollary 9 (OP,IV,C)-Bribery is in P for
C ∈ {CEQUAL,CFLIP,CLEVEL}.
Corollary 10 (OP,DV,C)-Bribery and (OP,IV+DV,C)-
Bribery is in P when C ∈ {CEQUAL,CFLIP,CLEVEL}.

One-step Veto Rule
The following theorem follows a similar construction to that
of Theorem 8. We omit the full proof.
Theorem 11 (OV,IV,C)-Bribery, (OV,DV,C)-Bribery and
(OV, IV+DV,C)-Bribery is in P when
C ∈ {CEQUAL,CFLIP,CLEVEL}.

One-step k-approval
In One-step k-approval (OK) we aggregate the n profiles by
taking the top k outcomes from each agents’ profile. Since
CP-nets induce a partial order we mean the top k according
to some linearization. In the traditional bribery domain, k-
approval, when k ≥ 3, is NP-complete when all the bribery
costs are equal (Faliszewski, Hemaspaandra, and Hemas-
paandra 2009). However, when agents’ preferences are ex-
pressed as CP-nets, bribery schemes for k-approval can be
computed in polynomial time under certain conditions. We
require the following lemma:
Lemma 12 Consider acyclic CP-nets and k = 2 j. Then the
top k outcomes of a CP-net are all the outcomes differing
from the top one on the value of j issues. Moreover, given
two CP-nets in the same profile and with the same top ele-
ment, they have the same top k elements.

Proof. Given a CP-net, consider any order of its issues
which is compatible with its dependency graph, say x1 >
· · ·> xi > xi+1 > · · ·> xm. For a given top outcome (assign-
ment to variables x1, . . . ,xm) the next outcome will be the
one with x̄m and variables x1, . . . ,xm−1 maintaining their as-
signments. This property is expandable up to any power of
two. If k = 2 j, then the top k outcomes have the same val-
ues for issues x1, . . . ,xm− j and differ on the values of issues
xm− j+1, . . . ,xm. Since we can use the same topological or-
der for any two CP-nets in a profile, if two CP-nets have the
same top outcome then they have the same top k outcomes
when k is a power of 2. q

Theorem 13 (OK,IV,CFLIP)-Bribery is in P when k = 2 j.

Proof. When k is a power of two, Lemma 12 tells us that,
for a given top candidate, the rest of the candidates must fol-
low in some order. Therefore, we treat the top k outcomes
as one bundle. This ends up restricting the number of candi-
dates each voter can approve of into certain bundles.

Now that we can treat the top k outcomes as a single item
we can apply the algorithm described in the proof of in The-
orem 8 in order to decide the cheapest bribery scheme to
elevate the group that includes p into the winning set. For
each voter we will need to find n safe groups and this can be
done in polynomial time. q

Similar to Theorem 8, we state the following:

Corollary 14 (OK,A,C)-Bribery where A ∈ {IV,DV, IV +
DV} and C ∈ {CEQUAL,CFLIP,CLEVEL} is in P when k = 2 j.

A practical use of this result is for the elicitation problem
for CP-nets: if the ordering over the issues is known, then
we only need to elicit the top candidate in order to know a
voters’ top k candidates, when k is a power of 2.

Manipulation and Non-binary Domains
We will now show that, in the setting we have considered,
manipulation is easy for two of the voting procedures. We
omit the proof for space.

Theorem 15 Weighted-CCM and unweighted-CCM are in
P for SM and OP.

Up to this point we have required that all variables in the
domain be binary. While this is a convenient and highly
expressive model, we wish to relax this assumption. This al-
lows the sequential composition of general voting rules (not
just majority) as in other work on voting in sequential do-
mains (Lang and Xia 2009).

In what follows, each issue has a domain with possibly
more than two values and the CP tables specify strict total
orderings on such domains. The briber will modify the lin-
ear orders, much like in the swap bribery domain described
by Elkind et al. (Elkind, Faliszewski, and Slinko 2009).

Now that we can use different voting rules we will as-
sociate to a profile (P,O) a vector R of voting rules <
r1, . . . ,rm >. At level i we use voting rule ri to aggregate the
preferences at that level and propagate the winning outcome
at that level to the next level for all agents’ CP-nets. Winner
determination in this domain is polynomial if evaluation of
the underlying voting rules are polynomial procedures.With

SM SMw OP OV OK
CEQUAL NP-c NP-c P P P*
CFLIP P NP-c P P P*

CLEVEL P NP-c P P P*

Table 1: Complexity results about bribery presented in this
paper. SMw stands for SM with weighted voters, P* stands
for P when k is a power of 2, NP-c stands for NP-complete.

this model we can make two observations about sequential
voting rules:
Theorem 16 If bribery or CCM is hard for any rule in
< r1, . . . ,rm > then bribery is hard for the sequential rule.

This property can be shown by providing a reduction from
the single issue bribery or CCM problem to the multi-issue
setting via the construction of an appropriate profile and by
exploiting the fact that CCM is a special case of bribery.
Theorem 17 If bribery or CCM is easy for every rule in
< r1, . . . ,rm > then bribery is easy for the sequential rule.
Proof. This follows from the separability property shown
in Theorem 3. Since the levels of the ordering O can be
treated independently the problem separates into a sequence
of independent bribery problems. If each one of these sub-
problems are computationally easy, the entire sequence is
computationally easy. q

Conclusions and Future Work
We have investigated the computational complexity of
bribery and manipulation schemes in voting scenarios with
a combinatorial structure over the set of candidates and
votes expressed via CP-nets. We generalized the traditional
bribery problem to encompass these domains. To this aim,
we considered four election rules, three bribery methods,
and three cost structures. For most of the combinations of
these parameters, bribery in this domain is computationally
easy. Our results are summarized in Table 1.

We have also shown several interesting properties of
acyclic CP-nets that can be leveraged for computational and
preference elicitation reasons. In fact, when agents express
their preferences as acyclic compatible CP-nets, there are
cases of the bribery problem that become computationally
easier than the single issue domains, since such CP-nets
have a restricted expressive power in terms of the orderings
they can induce.

We would like to generalize our work in order to study
other scoring and voting rules. We are also interested in con-
sidering additional bribery actions: in this paper, the briber
can only delete dependencies, while we would like to in-
vestigate the complexity of the bribery problem when the
outside agent is also allowed to add dependencies within the
CP-net.

Acknowledgements We are grateful for the support of
NSF IIS-1107011 for funding the initial research visit to
start this work as part of the IJCAI 2011 Doctoral Consor-
tium. Nicholas Mattei is also supported by NSF EAGER
grant CCF-1049360.

References
Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall.
Arrow, K. J.; Sen, A. K.; and Suzumura, K. 2002. Handbook
of Social Choice and Welfare. North-Holland, Elsevier.
Bartholdi, J.; Tovey, C.; and Trick, M. 1989. The computa-
tional difficulty of manipulating an election. Social Choice
and Welfare 6(3):227–241.
Boutilier, C.; Bacchus, F.; and Brafman, R. 2001. Ucp-
networks: A directed graphical representation of conditional
utilities. In Proc. UAI 2001, 56–64.
Boutilier, C.; Brafman, R. I.; Domshlak, C.; Hoos, H. H.;
and Poole, D. 2004. CP-nets: A tool for representing and
reasoning with conditional ceteris paribus preference state-
ments. JAIR 21(1):135–191.
Brafman, R. I.; Rossi, F.; Salvagnin, D.; Venable, K. B.; and
Walsh, T. 2010. Finding the next solution in constraint- and
preference-based knowledge representation formalisms. In
KR 2010. AAAI Press.
Brams, S.; Kilgour, D.; and Zwicker, W. 1998. The paradox
of multiple elections. Social Choice and Welfare 15(2):211–
236.
Christian, R.; Fellows, M.; Rosamond, F.; and Slinko, A.
2007. On complexity of lobbying in multiple referenda. Re-
view of Economic Design 11(3):217–224.
Conitzer, V.; Lang, J.; and Xia, L. 2009. How hard is it
to control sequential elections via the agenda. In IJCAI09,
103–108.
Conitzer, V.; Sandholm, T.; and Lang, J. 2007. When are
elections with few candidates hard to manipulate? JACM
54(3):1–33.
Downey, R., and Fellows, M. 1999. Parameterized Com-
plexity. Springer-Verlag.
Elkind, E.; Faliszewski, P.; and Slinko, A. 2009. Swap
bribery. Algorithmic Game Theory 299–310.
Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2009. How hard is bribery in elections? JAIR 35:485–532.
Faliszewski, P. 2008. Nonuniform bribery. In AAMAS08,
1569–1572.
Lang, J., and Xia, L. 2009. Sequential composition of voting
rules in multi-issue domains. Mathematical Social Sciences
57(3):304–324.
Lang, J. 2007. Vote and aggregation in combinatorial do-
mains with structured preferences. In IJCAI07, 1366–1371.
May, K. 1952. A set of independent necessary and suffi-
cient conditions for simple majority decisions. Economet-
rica 20,4:680–684.
Xia, L., and Conitzer, V. 2010. Strategy-proof voting rules
over multi-issue domains with restricted preferences. Inter-
net and Network Economics 402–414.

