ABSTRACT OF DISSERTATION

Nicholas Mattei

The Graduate School
University of Kentucky
2012
DECISION MAKING UNDER UNCERTAINTY: THEORETICAL AND EMPIRICAL RESULTS ON SOCIAL CHOICE, MANIPULATION, AND BRIBERY

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky

By
Nicholas Mattei
Lexington, Kentucky

Director: Dr. Judy Goldsmith, Professor of Computer Science
Lexington, Kentucky 2012

Copyright © Nicholas Mattei 2012
DECISION MAKING UNDER UNCERTAINTY: THEORETICAL AND EMPIRICAL RESULTS ON SOCIAL CHOICE, MANIPULATION, AND BRIBERY

This dissertation focuses on voting as a means of preference aggregation. Specifically, empirically testing various properties of voting rules and theoretically analyzing how much information it takes to make tampering with an election computationally hard.

Groups of individuals have always struggled to come to consistent and fair group decisions and entire fields of study have emerged in economics, psychology, political science, and computer science to deal with the myriad problems that arise in these settings. In my research I have sought to gain a deeper understanding of the practical and theoretical issues that surround voting rules. This dissertation lies within the field of computational social choice, a subfield of artificial intelligence. This cross disciplinary area has broader impacts within the fields of economics, computer science, and political science.

My theoretical work focuses on the computational complexity of the bribery and manipulation problems. The bribery problem asks if an outside agent can affect the results of a voting scenario given some budget constraints, while the manipulation problem asks if one or more voting agents can strategically misrepresent their votes to induce a more preferred outcome. These questions seem to hinge on the amount of information an agent has. In this work I investigate the situations where the agents have access to perfect information, uncertain information, and structured preference information. I find that, depending on the structure and type of information, the complexity of the bribery and manipulation problems can range from computationally easy to computationally intractable.

Equally critical to the theoretical aspects of voting are empirical tests of existing assumptions. I have identified a large, sincere source of data with which to test many assumptions in the social choice and voting theory literature. A dearth of accurate data has led many studies of the properties of voting rules to take place in the theoretical domain. With the new dataset I have been able to test many theoretical voting paradoxes with orders of magnitude more data than previously available. This work shows that many of the irregularities or paradoxes associated with voting occur very rarely in practice.
KEYWORDS: Artificial Intelligence, Computational Social Choice, Voting Theory, Bribery, CP-nets

Author’s signature:____________________

Date:____________________
RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of Kentucky Library are as a rule open for inspection, but are to be used only with due regard to the rights of the authors. Bibliographical references may be noted, but quotations or summaries of parts may be published only with the permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also requires the consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the signature of each user.

Name

Date
DECISION MAKING UNDER UNCERTAINTY: THEORETICAL AND EMPIRICAL RESULTS ON SOCIAL CHOICE, MANIPULATION, AND BRIBERY

DISSERTATION

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Engineering at the University of Kentucky

By

Nicholas Mattei
Lexington, Kentucky

Director: Dr. Judy Goldsmith, Professor of Computer Science
Lexington, Kentucky 2012

Copyright © Nicholas Mattei 2012
This document and all the research supporting it would not exist without the support of many people over the years. No matter what I write here I will forget someone who has helped me along the way. I’ll try my best.

My adviser Judy Goldsmith managed to put up with me for almost 6 years, including the time I tried to leave and go get a real job. She has been engaged, and in her own way, motivated me and kept me working on (mostly) one thing for the last several years. I would never have made it to the end without her guidance, feedback, and supervision, for this I will be forever grateful.

The rest of my committee, Andrew Klapper, Mirosław Truszczyński, and Stephen Voss, has provided invaluable feedback over the years. I would not have such a strong breadth and depth of knowledge if not for their insightful questions, comments, and suggestions.

I am eternally grateful to Francesca Rossi, who was an amazing host for a summer of research in Italy and a great outside committee member. I had a great time during my visit; I learned a lot, saw a lot, and returned to Kentucky with a new appreciation for the world and a new passion for research which carried me through the last year.

I have had the opportunity to work and publish papers with many different people over the years. I want to specifically thank all my coauthors for showing me the ropes of academic publishing and doing good quality research: Daniel Binkele-Raible, Gábor Erdélyi, Henning Fernau, Judy Goldsmith, Andrew Klapper, Maria Silvia Pini, Francesca Rossi, Jörg Rothe, and K. Brent Venable.

I wouldn’t be the researcher, scholar, or person that I am today without the help of more people than I can name. In addition to my supervisors, friends and family, I have had great guidance in my professional and personal life from many mentors who have taken an interest in my development and helped me along the way. Specifically Kim Wagenbach,
Bill Caldwell, David Bui, Charlie Friedericks, Kuok Ling, and Nghia Mai at NASA Ames Research Center; Debbie Keen for supervising me as a TA and showing me how to be a good instructor; and a host of researchers including Craig Boutilier, Vincent Conitzer, Piotr Faliszewski, Jérôme Lang, Victor Marek, Patrice Perny, Florenz Plassmann, Michel Regenwetter, Nic Tideman, Joel Uckelman, and Lirong Xia, who (sometimes unbeknownst to them) have shown me the way to success.

I have been honored to receive funding from many sources during my graduate studies. Without the support I would not have been able to spend as much time researching the things that interested me. Thanks to the National Science Foundation, specifically grants CCF-1049360, NSF ITR-0325063, NSF IIS-1107011 as part of the IJCAI 2011 Doctoral Consortium, the Northern Kentucky Alumni Club for their fellowship, the Myrle E. and Verle D. Nietzel Visiting Distinguished Faculty Program for their sponsorship, and the Department of Computer Science at the University of Kentucky for several years of teaching assistantships.

Thanks to all the members of the AI-Lab (past and present) at the University of Kentucky. Their presence and feedback has been invaluable over the years (as well as sitting through many practice talks): Peng Dia, Gayathri Namasivayam, Liangrong Yi, Tom Allen, Robert Crawford, Tom Dodson, Joshua Guerin, Daniel Michler, Paul Mihail, James Forshiee, Josiah Hanna, Libby Knouse, and Matt Spradling.

Thanks to all my friends who listened to me over the years. Keeping me distracted in my off hours and keeping me grounded (whether I was above or below it at the time); I couldn’t have done any of it without you and your constant, unwavering support: Michael Dillion, Alex Zerga, Bo Padgett, Mike Karounos, Zach Rosen, Aaron Kemper, Will Carraco, Joshua Slayton, Brian Vincent, Eren Turgay, Peter Arnborg, Ben Potash, Sarah Peters, Stephanie Franxman, Armir Bujari, Meredith Gaffield, Aaron Schooley, Keith Peterson, Aaron Swank, K. Alison Brotzge, Craig Kannapel and many many more. I wouldn’t be here and it wouldn’t be worth it without all of you.
Thanks to my immediate family, Theresa, Mike and Eric, without their constant love and support I wouldn’t have tried (and all those science camps helped too). I need to thank my extended family who have loved and supported me no matter what, especially my maternal grandparents Mary and Ernest Hillenmeyer; my paternal grandparents Mary Della and Innocente Mattei; my cousins Joe Hellebusch, Sara Hillenmeyer, and Liz Gillespie (among many); and all the rest of my extended family. For the years of nurturing, love, support, and for showing me that anything worth doing is worth doing well, I will be forever grateful.

Last and most to Liz, for everything.
For Liz and Mom, and for finally catching Dad.
TABLE OF CONTENTS

Acknowledgments .. iii

Table of Contents .. vi

List of Figures .. viii

List of Tables ... ix

Chapter 1 Introduction .. 1
 1.1 Motivation ... 1
 1.2 Main Contributions and Related Publications ... 3
 1.3 Structure of the Dissertation ... 7

Chapter 2 Preliminaries ... 10
 2.1 Mathematical Background .. 10
 2.1.1 Computational Complexity .. 10
 2.1.2 Flow Networks .. 19
 2.2 Social Choice and Preference Aggregation .. 21
 2.2.1 Voting and Common Voting Rules .. 22
 2.2.2 Affecting Elections: Bribery, Manipulation and Control 27

Chapter 3 Bribery and Manipulation with Uncertain Information 33
 3.1 Majority Voting and Multiple Referenda .. 34
 3.1.1 Initial Model ... 37
 3.1.2 Bribery Methods ... 40
 3.1.3 Evaluation Criteria .. 45
 3.1.4 Basic Probabilistic Lobbying Problem ... 48
 3.1.5 Issue Weighting ... 50
 3.1.6 Results ... 53
 3.1.7 Observations ... 64
 3.2 Sports Tournaments and Ranking Problems ... 64
 3.2.1 Model Definition ... 68
 3.2.2 The Probabilistic Tournament Bribery Problem 70
 3.2.3 Results ... 73
 3.2.4 Observations ... 95
 3.3 Summary .. 96

Chapter 4 Bribery and Manipulation in Combinatorial Domains 97
 4.1 Voting in Combinatorial Domains ... 97
 4.1.1 Structured Preferences .. 100
 4.1.2 Winner Determination and Voting with CP-nets 107
4.2 Bribery and Manipulation ... 111
 4.2.1 Bribery Actions .. 112
 4.2.2 Cost Schemes .. 114
4.3 The Combinatorial Bribery Problem 116
4.4 Results .. 120
 4.4.1 Winner Determination and Changing a Vote 121
 4.4.2 Sequential Rules ... 123
 4.4.3 One-Step Rules ... 129
 4.4.4 Manipulation and Non-binary Domains 138
4.5 Observations .. 140
4.6 Summary .. 141

Chapter 5 Empirical Analysis of Voting Rules and Election Paradoxes 142
 5.1 Motivation .. 142
 5.2 Survey of Existing Datasets 145
 5.3 The New Data .. 146
 5.4 Analysis and Discussion .. 151
 5.4.1 Preference Cycles ... 151
 5.4.2 Domain Restrictions .. 155
 5.4.3 Voting Rules ... 158
 5.4.4 Statistical Models of Elections 164
 5.5 Observations and Summary 169

Chapter 6 Conclusions and Future Directions 171

Bibliography .. 174

Vita .. 184
LIST OF FIGURES

2.1 An illustration of the ordering over the complexity classes. P is the computa-
ationally easiest class shown and PSPACE is the most computationally difficult
class shown. ... 16
2.2 An illustration of a reduction. Given an instance of problem A, we say f re-
duces A to B if all “yes” instances of A are transformed into “yes” instances of
B and likewise for “no” instances. .. 18

3.1 Example of (1) A challenge tournament and (2) a cup tournament. The winner
is the entrant who reaches the top node. 66
3.2 Tournament graph (T) for Example 3.2.2. 72
3.3 Step 1 of the construction of a minimal cost winner determination graph. We
have a source, sink, game nodes for each possible game, and collector nodes
for each participating entrant. ... 89
3.4 Step 2 of the construction of a minimal cost winner determination graph. We
build edges from the source to all game nodes with 1 unit of flow. 90
3.5 Step 3 of the construction of a minimal cost winner determination graph. We
build edges from all game nodes to their sure-to-win entrants. 91
3.6 Step 4 of the construction of a minimal cost winner determination graph. We
build two edges in cases where either entrant is a possible winner. ... 92
3.7 Step 5 of the construction of a minimal cost winner determination graph. We
encode the cost of minimum bribes to change deterministic game outcomes... 93
3.8 A complete example of a minimal cost winner determination flow network. ... 94

4.1 An example of a CP-net with three agents expressing O-legal profiles over
three binary variables. .. 102
4.2 An example of a CP-net with the corresponding graph representing the partial
order between all possible outcomes. 104
4.3 An example of a CP-net with the corresponding graph representing the par-
tial order between all possible outcomes. Ties are broken with independent
variables being considered more important than dependent variables. 105
4.4 An example of a “reversed” CP-net with three agents expressing O-legal pro-
files over three binary variables with all cp-statements reversed. 110
4.5 CP-net with three agents expressing O-legal profiles over three binary variables
for Example 4.3.1. ... 119

5.1 Empirical CDF of Set 1 for 3 candidate elections. 148
5.2 Empirical CDF of Set 1 for 4 candidate elections. 148
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Complexity results for the X-Y Probabilistic Lobbying Problem, where X ∈ {MB, IB, VB} and Y ∈ {SM, AM, PM}</td>
<td>53</td>
</tr>
<tr>
<td>3.2</td>
<td>Complexity results for X-Y Probabilistic Lobbying Problem with Issue Weighting, where X ∈ {MB, IB, VB} and Y ∈ {SM, AM, PM}</td>
<td>62</td>
</tr>
<tr>
<td>3.3</td>
<td>Complexity results for the Probabilistic Tournament Bribery Problem. In some cases we have been unable to provide lower bounds, in these cases we note our upper bound results (∈).</td>
<td>73</td>
</tr>
<tr>
<td>3.4</td>
<td>Complexity results for deterministic tournaments. The cup and round robin results are from Russell and Walsh [113].</td>
<td>95</td>
</tr>
<tr>
<td>4.1</td>
<td>Bribery complexity results for Sequential Majority and Weighted Sequential Majority.</td>
<td>123</td>
</tr>
<tr>
<td>4.2</td>
<td>Bribery and complexity results for one-step rules. OP(A) stands for voting rule OP with bribery actions A, and similarly for OV and OK, OK* stands for OK when k is a power of 2. In some cases we have not been able to provide lower bounds. In these cases we note the upper bounds with ∈.</td>
<td>130</td>
</tr>
<tr>
<td>5.1</td>
<td>Summary statistics for 3 candidate elections.</td>
<td>149</td>
</tr>
<tr>
<td>5.2</td>
<td>Summary statistics for 4 candidate elections.</td>
<td>150</td>
</tr>
<tr>
<td>5.3</td>
<td>Number of elections demonstrating various types of voting cycles for 3 candidate elections.</td>
<td>153</td>
</tr>
<tr>
<td>5.4</td>
<td>Number of elections demonstrating various types of voting cycles for 4 candidate elections.</td>
<td>154</td>
</tr>
<tr>
<td>5.5</td>
<td>Number of 3 candidate elections demonstrating preference profile restrictions.</td>
<td>156</td>
</tr>
<tr>
<td>5.6</td>
<td>Number of 4 candidate elections demonstrating preference profile restrictions.</td>
<td>157</td>
</tr>
<tr>
<td>5.7</td>
<td>Voting results (Spearman’s ρ) for 3 candidate elections.</td>
<td>160</td>
</tr>
<tr>
<td>5.8</td>
<td>Voting results (Spearman’s ρ) for 4 candidate election.</td>
<td>160</td>
</tr>
<tr>
<td>5.9</td>
<td>Condorcet Efficiency of the various voting rules for 3 candidate elections.</td>
<td>162</td>
</tr>
<tr>
<td>5.10</td>
<td>Condorcet Efficiency of the various voting rules for 4 candidate elections.</td>
<td>163</td>
</tr>
<tr>
<td>5.11</td>
<td>Mean Euclidean distance between the empirical data set and different statistical cultures (standard error in parentheses) for elections with 3 candidates.</td>
<td>168</td>
</tr>
<tr>
<td>5.12</td>
<td>Mean Euclidean distance between the empirical data set and different statistical cultures (standard error in parentheses) for elections with 4 candidates.</td>
<td>168</td>
</tr>
</tbody>
</table>