
Chapter 4 Bribery and Manipulation in Combinatorial Domains

This chapter details work on the computational complexity of finding optimal bribery

schemes in voting domains where the candidate set is the Cartesian product of a set of

variables and their domains, and agents’ preferences are represented as CP-nets. This work

includes model building; extending and defining aggregation methods and bribery methods

for these models; and complexity results of reasoning in these domains. We find that this

domain structure, which may lead to an exponential number of candidates in the size of the

input, causes many existing computational results for bribery to break down. We provide

new algorithms and complexity results which show that, in most cases, bribery in combina-

torial domains is easy. A summary of our results is shown in Table 4.1 and Table 4.2. This

also holds for some cases of k-approval, where bribery is difficult in traditional domains.

Portions of this work have been previously published as both an extended abstract [88] and

as an invited special session paper [89].

4.1 Voting in Combinatorial Domains

It is often natural to express group decision problems as the combination of a sequence of

decisions. This method is used in many settings, from the United States Congress (specif-

ically, votes for amendments to a bill) to a group of friends deciding what appetizer, main

course, and wine should be served for a group meal [18, 82]. In all these cases, agents

express preferences and vote on parts of the overall decision to be taken. Moreover, agents

may have dependent preferences: the choice of wine may depend on the choice of main

course for the meal. We consider a scenario where agents use the CP-net formalism, which

allows agents to compactly represent their preferences over many issues that may have

conditional dependencies [15, 90].

As we have seen, bribery and manipulation directly compromise the security and ro-

97



bustness of an election system. These questions are ways that agents (outside or inside an

election) can affect the election’s outcome [7,52]. In particular, the bribery problem regards

scenarios in which an outside agent with a limited budget attempts to affect the outcome

of an election by paying some of the agents to change their preferences so that a particular

candidate p wins the election. This problem was introduced to computational social choice

by Faliszewski et al. [52] and has become a metric by which the security of election rules is

judged [39, 51, 85]: if it is computationally difficult to find an optimal bribery in elections

decided by a certain voting rule, we can say that the rule is resistant to bribery.

Manipulation occurs when one or more voters attempt to vote strategically in order to

affect the result of the election [7,33]. Recall the Constructive Coalitional Manipulation

(CCM) problem [33]: given a set of agents X with fixed votes, a set Y of agents with

unfixed votes, and a candidate p, is there is an assignment of votes to the agents of Y

such that running the election on the complete set of votes (profiles) X ∪Y results in p

winning the election. Certain forms of the manipulation problem can therefore be seen

as bribery problems where the agents which can modify their vote do so for a unit cost,

those that cannot modify their vote have a bribery price of ∞, and the budget is equal to

the size of the manipulator set. While every reasonable voting rule is manipulable [3], a

rule may be said to be resistant to manipulation if it is computationally difficult to decide

how to manipulate [7]. The complexity of manipulation was first studied by Bartholdi et

al. [7] with further study by Conitzer et al. [33] and is another metric for election security.

These problems have been studied extensively in computational social choice, however, the

literature is sparse when elections have combinatorially structured domains.

The setting we study in this chapter is novel for several reasons. We allow sets of

candidates which are the Cartesian product of the domains of a set of possible decisions.

This raises several interesting questions as to what it means to compute a winner and what

bribery means in these combinatorial domains. The use of structured, combinatorial pref-

erences leads to instances where some voters, depending on their preference dependencies,

98



cannot be bribed to vote for any arbitrary candidate. This restriction, along with the poten-

tially exponential number of candidates, breaks some of the existing algorithms for bribery

and manipulation.

When voting is structured as the combination of several decisions, there are two natu-

ral methods to employ when selecting a winner. We investigate multiple individual rules

within two overarching winner determination strategies.

Sequential Methods: A sequential method aggregates each agents’ preference issue-by-

issue. This is akin to how amendments to a bill are passed in the US Congress [18].

The final decision is the sum total of all the sequential decisions. In this chapter we

consider a sequential majority (SM) rule.

One-step Methods: A one-step method aggregates the agents’ votes over the set of all

combinations of value assignments to all issues. This would be the method where a

group of friends votes on a complete meal for some shared group meal [82]. With a

one-step method we can incorporate several individual voting rules. In this section

we consider one-step plurality (OP), one-step veto (OV), and one-step k-approval

(OK).

Unlike previous studies on bribery, CP-nets do not necessarily lend themselves to the

convention that the cost of bribery is either a fixed constant for all voters, a fixed constant

on a per-voter basis, or related to the number of swaps in the candidate ordering [43, 52].

In fact, we do not always want to work on the outcome ordering, since it is exponentially

large, but on the CP-net. Since a single flip in a CP-net preference statement (cp-statement)

can lead to a large change in the outcome ordering, we consider four different bribery cost

schemes.

CEQUAL: Any amount of change in a CP-net is a unit cost.

CFLIP: The cost of bribery is the number of variable flips in the CP-net.

99



CLEVEL: The cost is the number of variable flips weighted by variable position within the

CP-net.

CANY: The cost is the number of variable flips weighted by a specific cost per variable.

In the rest of this section we provide an overview of structured preference models,

specifically CP-nets, for compactly expressing preference in combinatorial domains and

their use in voting procedures. In Section 4.2 we precisely define our domain and formulate

our three bribery actions and four cost schemes that are used in combinatorial bribery. Sec-

tion 4.3 gives the bribery and manipulation problems within our model. Section 4.4 gives

our results about the complexity of computing optimal bribery and manipulation schemes

in our models. Our results section is broken up according to voting rule and aggregation

method in order to provide a cohesive narrative. Section 4.4.4 expands our model to encom-

pass domains where variables are non-binary and provides results about the composition of

multiple voting rules. We end in Section 4.5 which details the changes in complexity from

traditional bribery domains to those when agents’ preferences are represented as CP-nets.

4.1.1 Structured Preferences

Combinatorially structured election domains are used in many places including the United

States House of Representatives [18]. This election structure considers several possibly

independent variables of some whole described by the assignment of each of the variables

to some value. The canonical example in the ComSoc community is choosing the appetizer,

main course, desert, and wine for a meal. Each course has several alternatives and the

combination of all possible choices for all possible courses creates the set of alternatives (or

candidates). This sequential framework creates a possibly exponential number of complete

configurations of meals in the description of the problem instance.

Sequential elections were first introduced and studied in computational social choice by

Lang [79]. Lang provided a comprehensive axiomatic description of several voting rules

100



when extended to combinatorial domains when agents’ preferences are expressed as CP-

nets [79]. In later work, Lang and Xia considered the properties of several election rules

and how these properties change when rules are used as part of a sequential election domain

[82]. Additional work by Xia et al. investigates the properties of sequential election rules

when cyclic preferences are allowed [137] and axiomatic characterizations of strategy-

proof sequential voting rules [136].

While bribery has not been specifically investigated in any domain with sequential elec-

tions, Conitzer et al. investigated the control problem in sequential voting domains [29]

when agents’ preferences are recorded with a network structure similar to CP-nets. While

Xia et al. have investigated the possibility of strategic voting by a single voter in sequential

voting when agents’ preferences are recorded as CB-nets [138]. Dalla Pozza et al. in-

vestigate sequential voting domains when agents’ preferences are represented as soft con-

straints [37].

In our model of elections under uncertainty in Section 3.1, observe that a complete

agenda with multiple referenda is similar to the combinatorial domains we study in this

chapter. However, in the uncertain election model, all issues are independent whereas in

the combinatorial domains in this chapter allow for issues to have conditional dependencies

upon one another. In some cases one model can be described with the other (deterministic

instances of the uncertain information model are equivalent to the combinatorial model

with all independent variables). This subcase, however, does not take advantage of the

fidelity of either model. We think of them as models designed to investigate different types

and amounts of information that may be available to an outside agent.

A major challenge for computational social choice is describing agent preferences in

domains where there is a large number of candidates. Artificial Intelligence provides sev-

eral formalisms to do this, including CP-nets [15], the one we consider in this work. CP-

nets are a graphical model for compactly representing conditional and qualitative prefer-

ence relations. CP-nets are sets of ceteris paribus preference statements (cp-statements).

101



Figure 4.1: An example of a CP-net with three agents expressing O-legal profiles over three
binary variables.

App

Main

Wine

Agent 1

App Soup > Salad

Main Meat > Fish

Wine Red > White

App

Main

Wine

Agent 2

App Salad > Soup

Main Fish > Meat

Wine Fish: White > Red

Meat: Red > White

App

Main

Wine

Agent 3

App Salad > Soup

Main Fish > Meat

Wine Salad, Fish:  White > Red

Salad, Meat: Red > White

Soup, Meat: Red > White

Soup, Fish: Red > White

For instance, the cp-statement “I prefer red wine to white wine if meat is served.” asserts

that, given two meals that differ only in the kind of wine served and both containing meat,

the meal with red wine is preferable to the meal with white wine.

Formally, a CP-net has a set of issues or variables m = {x1, . . . ,xn}, and each issue has

a finite domain D(x1), . . . ,D(xn). Each issue xi has a set of parent issues Pa(xi) whose

assignment can affect the ordering over the values of xi. This set of dependencies defines

a graph where each xi has Pa(xi) as its immediate predecessors. In general, CP-nets allow

for cyclic dependencies within the implied graph. However, in this work we only allow

acyclic dependency graphs. Given the implied graph structure an agent specifies a total

order (strict linear order) over the values of each xi for each complete assignment of the

variables in Pa(xi). These orders are referred to as cp-statements. A CP-net is compact if

the maximum number of parents of a feature is bounded from above by a constant. This

formalism allows for a superpolynomial number of outcome assignments in the description

102



size of the CP-net. If we allowed for an unbounded number of parents for each variable,

since we have to enumerate all linear orders for all combinations of parent variables, our

tables would be exponential in size.

Figure 4.1.1 shows an example of a CP-net and corresponding cp-statements. In this

graph we have three issues m = {App,Main,Wine}. The domains for the variables are

D(App) = {Soup,Salad}, D(Main) = {Fish,Meat}, and D(Wine) = {Red,White}. We

have three different agents and each agent has its own set of dependency relations within

the preference graph. Agent 1 has no preferential dependencies and therefore none of his

variables have parent variables ( Pa(App) = /0 for Agent 1). Agent 2’s preferences on wine

are dependent on his assignment for main course. The encoding of Agent 2’s preferences

make the statement that, “I prefer red wine to white if meat is served.” So Agent 2, given

two meals that differ only in the kind of wine, the meal with red wine is more preferred.

Agent 3 has a more complex set of dependencies in his graph. Recall that, for each variable,

a complete assignment must be provided for all assignments of the parent variables. This

is why Agent 3’s preference table is so much more complex. Since the Wine issue has two

parents, Agent 3 must specify a wine preference for all possible combinations of App and

Main.

In general we consider issues with only binary domains in this chapter. For a given

issue A, we denote A’s binary domain as a and a with an individual cp-statement of a > a.

Given a set of issues A,B where the assignment of B is dependent on the assignment of

A, we write our cp-statements as: a > a, a : b > b, and a : b > b. These statements imply

the dependency graph and explicitly state that A = a is unconditionally preferred to A = a

and that B = b is preferred when A = a. A complete assignment to all issues is called an

outcome or a candidate. When examining binary domains, CP-nets allow us to compactly

express preference over an outcome space of cardinality exactly 2m, where m is the number

of issues.

In general, finding the optimal (most preferred) outcome of a CP-net is NP-hard [15].

103



Figure 4.2: An example of a CP-net with the corresponding graph representing the partial
order between all possible outcomes.

App

Main

Wine

Agent 1

App Soup > Salad

Main Meat > Fish

Wine Red > White

[Soup,Meat,Red]

[Salad,Meat,Red] [Soup,Fish,Red] [Soup,Meat,White]

[Salad,Fish,Red] [Salad,Meat,White] [Soup,Fish,White]

[Salad,Fish,White]

However, in acyclic CP-nets, there is only one optimal outcome and this outcome can be

found in linear time by sweeping through the CP-net in topological order and assigning

the most preferred values according to the cp-statements. Consider Agent 3 in the example

illustrated in Figure 4.1.1. Agent 3 would choose App = Salad and Main = Fish. Af-

ter these two are set we investigate the cp-statement for the last variable and select the

appropriate value Wine =White to find his top outcome.

Given an outcome for an agent, a worsening flip is a change in the value of an issue

to a less preferred value according to the relevant cp-statement for that issue. In general,

one outcome α is better than another outcome β (α � β ) if and only if there is a chain of

worsening flips from α to β . This definition induces a preorder (reflexive and transitive re-

lation) over the outcomes, which is a partial order (reflexive, transitive, and anti-symmetric

relation) if the dependency graph of the CP-net is acyclic. Figure 4.1.1 illustrates the partial

order over all the outcomes defined by the CP-net of Agent 1. The top outcome according

104



Figure 4.3: An example of a CP-net with the corresponding graph representing the partial
order between all possible outcomes. Ties are broken with independent variables being
considered more important than dependent variables.

App

Main

Wine

Agent 2

App Salad > Soup

Main Fish > Meat

Wine Fish: White > Red

Meat: Red > White

[Soup,Meat,Red]

[Salad,Meat,Red]

[Soup,Fish,Red]

[Soup,Meat,White]

[Salad,Fish,Red]

[Salad,Meat,White]

[Soup,Fish,White]

[Salad,Fish,White]

to the CP-net is {Soup,Meat,Red}. The arrows from this outcome represents all the pos-

sible worsening flips from the top outcome. Traversing any of the edges from one outcome

to another down the induced graph of assignments means we are moving from a better to

a worse outcome. Note that, since there are no dependencies and we have not defined any

relationship between the independent variables, the nodes of the graph at each level are

incomparable (occupy the same position in the partial order).

In an acyclic CP-net it is also computationally easy, given an outcome, to find the next

best outcome in a linearization of the induced outcome ordering [17]. In a CP-net, all out-

comes may not be ordered since the CP-net only implies a partial order and so some assign-

ments may be incomparable. In some cases, we may require a total order over the outcome

ordering and in these cases we enforce some kind of linearization as is standard [20, 34].

If finding the next best outcome according to the linearization scheme is computationally

105



easy then it is also easy to find the top k outcomes when k is polynomially bounded.

A standard way to define a linearization is to provide a total order over the variables

and then to linearize incomparable elements using a lexicographical approach based on

this total order and on the conditional preferences. We illustrate this in Figure 4.1.1

where we show Agent 2’s CP-net and the induced graph according to worsening flips.

The graph also shows the partial order when we consider independent variables more im-

portant than dependent variables. We have broken the tie between {Salad,Fish,Red} and

{Soup,Fish,White} using this rule. Each of these assignments contains one variable with a

less preferred assignment. The reason that {Salad,Fish,Red} precedes {Soup,Fish,White}

in the partial order is because {Salad,Fish,Red} has a less preferred assignment in a de-

pendent variable (less important). If we were to linearize the order in Figure 4.1.1 into

a strict linear order using a lexicographic linearization method by variable name we get:

{Salad,Fish,White}> {Salad,Fish,Red}> {Salad,Meat,Red}> {Soup,Fish,White}>

{Salad,Meat,White}> {Soup,Fish,Red}> {Soup,Meat,Red}> {Soup,Meat,White}.

Given a set of issues, domains, and some preferred outcome p, there is always a CP-net

that has p as its optimal outcome [15]. However, given issues, domains, and an outcome

ordering p1, . . . , pn, there may be no CP-net whose induced outcome ordering coincides

with the given ordering. In fact, CP-nets cannot model all outcome orderings. For ex-

ample, two outcomes differing for the value of one issue must necessarily be ordered in

the preorder induced by a CP-net. So, if we are given an ordering where two outcomes

that differ on a single variable that is incomparable, there is no CP-net that can induce

this ordering. Although CP-nets have a limited expressiveness, they also present inher-

ent advantages because of their qualitative nature, especially in the context of preference

elicitation.

106



4.1.2 Winner Determination and Voting with CP-nets

Voting theory provides a myriad voting rules to aggregate agents’ preferences. We survey

some of these methods in Section 2.2.1. Recall that each rule takes, as input, a partial or

complete preference ordering of the agents and gives, as output, a winner (an outcome that

is best according to the rule). If there are only two candidates, the best rule, according

to many criteria, is majority voting [91]. When there are more than two candidates, there

are many voting rules one could use (Plurality, Borda, STV, approval, etc.), each with its

advantages and drawbacks.

In this chapter we consider the following voting rules, modified slightly to work when

agents’ express their preferences as CP-nets. Each candidate when voting in combinatorial

domains is a complete assignment to all variables within the domain.

Plurality: The candidate ranked first receives a point. The candidate(s) with the most

points win the election. When there are two candidates, plurality coincides with

majority.

Veto: Each voter chooses a candidate to veto (disapprove) with all other candidates receiv-

ing a point. The candidate(s) with the most points wins the election.

k-approval: Each voter approves of k out of m candidates (k ≤ m) and disapproves of the

remaining candidates. All approved candidates receive one point. The candidate(s)

with the most points win the election.

The study of voting theory, as discussed in Section 2.2.1, provides an axiomatic charac-

terization of voting rules in terms of desirable properties such as: the absence of a dictator,

unanimity, anonymity, neutrality, monotonicity, independence of irrelevant alternatives,

and resistance to manipulation and bribery. In this chapter we focus on combinatorial vot-

ing domains and their resistance to bribery.

The model we consider in this chapter has a n agents with preferences over a common

set of candidates. The candidate set has a combinatorial structure: there is a common set of

107



m binary issues and the set of candidates is the Cartesian product of the variable domains.

Each candidate (or outcome) is an assignment of values to all issues, thus we have 2m

candidates.

Each agent expresses its preferences over the candidates via a compact acyclic CP-net.

Moreover, when we use a sequential approach to voting we require additional restrictions

on the CP-nets. The CP-nets for sequential methods must be compatible with one another:

there is a total ordering O over the issues such that, in each CP-net, each issue must be

independent of all issues following it in the ordering O and no dependency graph may

contain cycles.

A profile (P,O) is a collection P1, . . . ,Pn of n CP-nets over m common issues and a total

ordering O over the issues that satisfies the above property. This is called an O-legal profile

and was introduced by Lang [79]. Notice that the CP-nets appearing in such profiles do

not necessarily have the same dependency graphs. This is illustrated in Figure 4.1.1, our

running example. Each of the three agents has the same ordering over the issues O =

{App,Main,Wine} but each agent has a different dependency graph. Moreover, each of

the agents’ CP-nets combine to form an O-legal profile: the CP-nets are acyclic, follow an

ordering, and are compact.

It is worthwhile to clarify our notion of an agent: an agent is only a CP-net handler.

He has the ability to specify a CP-net over a given set of binary issues and to compute the

optimal outcome, the top k outcomes, and the worst outcome of his CP-net. He does not

handle the explicit partial order over all the outcomes of the CP-net, but just the CP-net,

which is a compact representation of the ordering.

To determine the winning outcome, we consider two different approaches: sequential

and one-step rules. Within these, we define four distinct voting rules when selecting a

winning outcome. Notice that the O-legality condition is not required for the one-step

approaches; in these settings, the CP-nets in a profile can have very different dependency

structures. Tie-breaking, as discussed in Section 2.2.1 is a complex issue and we discuss it

108



for our domain when we formally define our problem in Section 4.3.

Sequential Majority (SM)

Sequential Majority describes Lang’s sequential procedure [79] instantiated on binary is-

sues. For SM we consider only O-legal profiles. For each issue in the ordering O, we

select a winning assignment using majority (since issues are binary). The value chosen

for an issue is returned to all agents who then fix the issue to that value in their respective

CP-nets. When voting has completed on all issues, the winning outcome is defined by the

issue instantiations chosen by majority at each of the voting steps.

Example 4.1.1 Consider our running example of three agents illustrated in Figure 4.1.1.

Since we have three issues we will hold three separate sub-elections, all decided by major-

ity. Since O = {App,Main,Wine} for this example, we first take a majority vote for App

and Salad is preferred by a vote of two to one. We then return this value to all agents and

have them fix this value in their CP-net. Moving to the next issue we have that Fish is

preferred to Meat by a two to one majority. The partial assignment for all agents is now

{Salad,Fish}. This has caused two of Agent 1’s preferences to be reversed but we do not

need to update his CP-net as it contains no dependencies. For Wine we see that Agent 2’s

preferences are White > Red given our assignment to Fish. Agent 3’s preference is for

White as well and now we have a majority for White of two to one. The winning outcome

for this example with the SM procedure is {Salad,Fish,White}.

One-step Plurality (OP)

In OP we ask each agent to provide their optimal outcome according to their CP-net. We

then use the plurality rule to evaluate the winning outcome. Note that for this method (and

all the other one-step methods) we do not require the O-legality constraint, merely that

agents be able to compute their top outcome.

109



Figure 4.4: An example of a “reversed” CP-net with three agents expressing O-legal pro-
files over three binary variables with all cp-statements reversed.

App

Main

Wine

Agent 1

App Salad > Soup

Main Fish > Meat

Wine White > Red

App

Main

Wine

Agent 2

App Soup > Salad

Main Meat > Fish

Wine Fish: Red > White

Meat: White > Red

App

Main

Wine

Agent 3

App Soup > Salad

Main Meat > Fish

Wine Salad, Fish: Red > White

Salad, Meat: White > Red

Soup, Meat: White > Red

Soup, Fish: White > Red

Example 4.1.2 Consider our running example of three agents illustrated in Figure 4.1.1.

By investigation we see that Agent 1 will vote {Soup,Meat,Red}, Agent 2 will vote {Salad,

Fish, White}, and Agent 3 will vote {Salad,Fish,White}. Collecting these votes under the

plurality rule the winning outcome with two votes is {Salad,Fish,White}.

One-step Veto (OV)

In OV we ask each agent to provide their worst outcome according to their CP-net. Each

agent can determine their worst outcome by flipping all of their individual cp-statements,

the reversed cp-statements for our running example are illustrated in Figure 4.1.2. For this

method there may be many candidates in the winner set because the number of alternatives

may be exponential in the number of voters. However, since we are using this as a social

choice procedure, we only need to select one alternative from the winning set, which we

can do in polynomial time.

110



Example 4.1.3 Consider our running example of three agents illustrated in Figure 4.1.1.

First each agent must reverse all the cp-statements in their CP-nets. This will leave the

agents with the CP-nets illustrated in Figure 4.1.2. We see that Agent 1 will veto

{Salad,Fish,White} while Agent 2 and Agent 3 will both veto {Soup, Meat, White}. In this

case we have veto’s for two of the 23 = 8 possible outcomes. Therefore, the winning set is

made up of six alternatives (ordered by the variable ordering and then lexicographically):

{Salad, Fish, Red}, {Salad, Meat, White}, {Salad, Meat, Red}, {Soup, Fish, Red}, {Soup,

Fish, White}, {Soup, Meat, Red}. Here we would select {Salad, Fish, Red} if we employ a

lexicographic tie breaking rule.

One-step k-approval (OK)

We ask each agent to provide their top k outcomes according to their CP-net, and a lin-

earization of the outcome ordering (unless otherwise noted we always assume that our

linearization is according to the variable ordering, then lexicographically). We require the

linearization here because it is possible that k is not a round power of two. It is also pos-

sible, though we do not discuss it in this work, for each agent to individually employ their

own linearization procedure. In this case we could have that k includes some, but not all,

elements of an incomparable set in the partial order.

Example 4.1.4 Consider the situation where k = 2 in our running example illustrated in

Figure 4.1.1. We see that Agent 1 will approve of {Soup,Meat,Red} and {Soup, Meat,

White}. Agent 2 and Agent 3 will approve of {Salad,Fish,White} and {Salad,Fish,Red}.

Therefore, the winning set consists of the two options chosen by both Agent 2 and 3.

4.2 Bribery and Manipulation

The bribery problem we consider in this chapter has three parameters: the way a winner

is chosen from the given profile, the bribery actions, and the cost scheme for the bribers’

111



requests. In this section we extend the traditional notions of bribery in order to account

for combinatorial domains and our structured preference representation. Bribery is usually

considered in domains with only one issue to be decided [52] or, as in Section 3.1, multiple

independent issues. It is a non-trivial exercise to define bribery in the domain considered

in this chapter.

4.2.1 Bribery Actions

Bribery actions are the changes agents perform in their preferences in response to a briber’s

request. In most bribery frameworks, agents express their preferences over the candidates

via a total order, and the briber asks agents to make changes within this total order. In

our setting, agents have a CP-net instead of an explicit outcome ordering. We define the

bribery actions as changes in the total order of some cp-statements. If the briber could

ask for any change in the ordering induced by the CP-net, some of these changes could be

computationally hard or impossible to accomplish via changes to the CP-net. Therefore, we

define the bribery actions as changes made directly to the cp-statements within the CP-net

of an agent. Since a cp-statement gives a total order for the domain of an issue, the briber

asks for a new total order over that domain. In this section we consider binary issues, so

changing a cp-statement means flipping the positions of the two values of an issue.

In a CP-net, a cp-statement is associated with a certain issue, and issues are of two

kinds: independent and dependent. Independent issues have indegree zero in the depen-

dency graph while dependent issues have indegree ≥ 1. Independent variables can affect

larger changes in the final preference order and, since they are independent, agents have

“pure preferences” over them, independent of any other assignment. Therefore, we con-

sider independent variables to be more important than dependent variables.

We distinguish bribery actions by specifying in which cp-statements the briber is al-

lowed to request a change.

IV: The briber can only request a change in the cp-statements of independent variables.

112



DV: The briber can only request a change in the cp-statement of dependent variables.

IV+DV: The briber can ask for any change in any cp-statement.

Notice that, with any of these bribery actions, no dependency can be added in the

CP-nets. In fact, the outside actor can only remove dependencies through the variable

assignment swaps. Thus, the new CP-nets are still compatible with one another and with

the ordering O over the issues. This is only important for SM. Additionally, if only one

or the other type of bribe is available then there are outcomes that may not be able to be

elevated to the most preferred outcome, as illustrated in the following example.

Example 4.2.1 Consider our running example from Figure 4.1.1. Suppose

p = {Soup,Meat,White} and we need to bribe some of the agents to have this as their top

outcome using the SM rule.

When considering only IV bribes, all of Agent 1’s preferences can be changed since they

are all independent. For Agent 1, we only need to bribe him to swap his assignment such

that Wine =White; p now has one vote. For Agent 2, both App and Main are independent

variables and we can bribe the agent on these two variables only. When we bribe these

variables (swapping them to make the variable assignments match p) we see that Agent

2’s most preferred assignment is Wine = Red, given Main = Meat. Since we are only

allowing IV bribes we cannot make Agent 2’s preferences match p. For Agent 3 we have

the same problem as Agent 2. Though we can set Agent 3’s assignment to App = Soup and

Main = Meat, this causes Wine = Red in the CP-net. We cannot make p the winner of the

election.

Consider the case of only DV bribes. In this case we cannot change any of Agent 1’s

preferences because all his preferences are independent. Likewise, we cannot bribe Agent

2 or Agent 3’s assignment of App because no agent has App as a dependent variable.

In this case we could change the assignment of Wine but because we cannot change the

assignment of any other variable, we cannot make p a winner.

113



In the case of IV+DV bribes we can make p a winner. We make the same bribes to the

agents as we did in the IV example. This time, however, we can also bribe Agent 2 and

Agent 3 to have Wine =White. Using IV+DV we can make all agents have p as their top

preference and a winner in the election.

4.2.2 Cost Schemes

In traditional bribery domains, the cost of the bribery actions is either fixed for any amount

of change for each agent [52], variable per agent for any amount of change [51], or it

depends on the number of swaps to be performed on the current total order [43]. However,

we feel that none of these methods captures an effective cost scheme when agents express

their preferences as CP-nets and voting is done over a combinatorial domain. We do not

want to work on the outcome ordering, since it can be exponentially large; we would rather

modify the CP-net directly. However, a single flip in a CP-net preference statement can lead

to a large change in the outcome ordering and we need to take this into account. In fact, a

formalism closer to the one defined in Chapter 3, where agents have cost associated to the

change in probability of a vote, is not sufficient in the CP-net context either. Therefore, in

this chapter we consider four different cost schemes. Some of these cost schemes closely

resemble the costs in more traditional bribery domains while others are more closely tied

to the use of the CP-net formalism and applicable to combinatorial domains.

The four cost schemes we investigate in this chapter are listed here from least expressive

to most expressive.

CEQUAL: A unit cost allows any number of flips in the cp-statements of a CP-net. This

method is the same as the one proposed by Faliszewski et al. in the original definition

of bribery [52].

CFLIP: The cost of changing a CP-net is the total number of individual cp-statements that

must be flipped in order to change one profile Pi to a target profile Pt . This method

114



captures a notion of how much change the briber is asking for, and makes the cost

of bribery proportional to the total amount of change. This method is similar to the

swap bribery method introduced by Elkind et al. [43] applied to CP-nets instead of

strict linear orders.

CLEVEL: We expect an issue that is closer to being independent is more important, as in

some other structured preference formalisms [14], than a issue buried deep in a de-

pendency graph. Therefore, we expect that the cost of changing a more influential

issue should be higher than lower level issues. We link the cost of a flip to this im-

portance: the cost of changing a CP-net is the total number of flips performed in

the cp-statements, each weighted according to the level of the relevant issue (in the

original CP-net configuration). We define the level of a issue recursively as:

level(x) =


1 if x is an independent issue;

i+1 if all parents of x are in levels {1, . . . , i}

and there is a parent in level i.

(4.1)

We can then precisely define the cost of flipping an issue as ∑x f lip(x)× (k+ 1−

level(x)), where x ranges over the issues, k is the number of levels in the CP-net, and

f lip(x) is the number of flips performed in cp-statements associated with x.

CANY: The total cost is the number of flips, each weighted by a specific cost. Formally, we

define a vector for each agent that, for every variable vi ∈M, maps vi→ Z+
0 so that

modifying any variable in the instance has its own associated price. This is similar

to the nonuniform bribery model introduced by Faliszewski [51]

Each of the above cost schemes can be generalized to account for agents with different

bribing costs by associating a certain cost to each agent. This allows each agent to have its

own cost function. We assume, where necessary, that each agent has their own individual

bribing cost and we are provided a vector ~Q ∈ Z+ of size n where each Q[i] denotes the

115



individual bribing cost of agent i. We multiply this bribing cost by the cost returned from

the given cost scheme. This creates a situation similar to plurality-$bribery introduced by

Faliszewski et al. [52].

In many variations of the bribery and manipulation problems it is standard to attach

weights to each voter [33, 52]. Weights usually represent a group of voters who all think

alike, or voters with differing levels of importance such as shareholder votes for publicly

traded companies. We will sometimes assume a weight vector is provided ~W ∈ Z+ where

W [i] represents the weight associated to each voter i. When we use weighted voters we

require that p be elected according to the given voting rule.

It is important to note that the distance of an outcome from the optimal one is not neces-

sarily linked to the number of flips needed in the cp-statements to make that outcome opti-

mal. Consider the CP-net and associated ordering presented for Agent 2 in Figure 4.1.1. In

the outcome ordering the optimal ordering is {Salad,Fish,White} and {Salad,Meat,Red}

dominates {Salad,Meat,White} in the CP-net and therefore {Salad,Meat,White} is far-

ther away from the optimal outcome in the partial order. To make {Salad,Meat,White} the

optimal outcome we only need to flip one cp-statement (Fish→Meat). However, to make

{Salad,Meat,Red} the optimal outcome in the CP-net, we require two flips (Fish→Meat

and White→Red) for a total cost of 2 for CFLIP (versus 1 for the other outcome). For CLEVEL

we have a similar situation: changing the optimal outcome to {Salad,Meat,White} has

cost 1 while switching to {Salad,Meat,Red} has cost 2×1+1 = 3 (one independent and

one dependent flip). Therefore, the cost schemes CLEVEL and CFLIP (and the more general

CANY) do not respect the distance-by-flips notion.

4.3 The Combinatorial Bribery Problem

We are now ready to formally state the bribery problem we study in this chapter. We can

state this problem for each choice of winner determination rule D ∈ {SM,OP,OK,OV},

bribery action A ∈ {IV,DV, IV +DV}, and cost scheme C ∈ {CEQUAL,CFLIP,CLEVEL,CANY}.

116



Name: (D,A,C)-Bribery

Given: A profile (P,O), where P is a collection of n compact, acyclic CP-nets with m

binary issues and O is a total ordering of the issues (when necessary), a budget B ∈

Z+, a preferred outcome p, and (when necessary) a bribing cost vector ~Q ∈ Z+, and

weights ~W ∈ Z+.

Question: Is there a way for an outside actor to make p win in profile (P,O) with winner

determination rule D ∈ {SM,OP,OK,OV} using bribery actions according to A ∈

{IV,DV, IV +DV}, paying according to the cost scheme C ∈ {CEQUAL,CFLIP,

CLEVEL,CANY} and bribing cost vector ~Q, weight ≥W and without exceeding budget

B?

The CCM problem is defined analogously for our domain with the condition that all

entrants in the manipulator set have a unit cost to bribe and all other voters have infinite

cost. This means that the CCM problem is actually a sub-problem of the bribery problem

in this case.

Name: (D)-Manipulation

Given: A preferred outcome p and profile (P,O), where P is divided into two disjoint

sets X and Y where ||X ||+ ||Y ||= n. The voters in X have preferences expressed as

compact, acyclic CP-nets with m binary issues that follow the ordering O over the

issues (when necessary) and the voters in Y have no preferences.

Question: Are there CP-nets for the agents in Y that are consistent with the ordering O

(when necessary) such that p is made a winner in profile (P,O) with winner determi-

nation rule D ∈ SM,OP,OK,OV ?

We assume, as in other works on bribery such as those by Elkind et al. [43] and Fal-

iszewski et al. [52], a non-unique winner model: we are only asked to elevate p into the

117



winning set. Some of our reductions can be extended to a unique winner model but we fo-

cus on the general case. While we obtain mostly easiness results under this winner model

(as did Bartholdi et al. [7]), a complete investigation of tie-breaking and its effect on the

complexity of manipulation is outside the scope of this chapter. In fact, the careful study of

tie-breaking mechanisms is extremely complex as shown by Obraztsova et al. [98] among

others [58] and requires its own course of study.

118



Example 4.3.1 Recall our running example with the CP-nets depicted below.

Figure 4.5: CP-net with three agents expressing O-legal profiles over three binary variables

for Example 4.3.1.

App

Main

Wine

Agent 1

App Soup > Salad

Main Meat > Fish

Wine Red > White

App

Main

Wine

Agent 2

App Salad > Soup

Main Fish > Meat

Wine Fish: White > Red

Meat: Red > White

App

Main

Wine

Agent 3

App Salad > Soup

Main Fish > Meat

Wine Salad, Fish:  White > Red

Salad, Meat: Red > White

Soup, Meat: Red > White

Soup, Fish: Red > White

Given these profiles and O = {App,Main,Wine} we can consider several examples of

our bribery problem parameterized by different attributes.

(SM-IV-CEQUAL)-Bribery: Consider a case where B = 10, ~Q = [5,5,5], and p = {Soup,

Meat,Red}. We need to select some bribes, only in the IV variables, in order to make

p a winner of the election decided by SM. By investigation we see that Agent 1 has

exactly p as its top outcome so we do not need to bribe him at all. Additionally, we

see that if we give bribes to either Agent 2 or Agent 3 on the App and Main, they will

change Wine→ Red. Since we are using CEQUAL and Q[2] = Q[3] = 5 we can make

both assignment changes in either agents’ cp-statements for a cost of 5. This makes

each individual element of p a majority winner at its respective level. Therefore this

is a “yes” instance of our problem.

119



(OV-DV-CFLIP)-Bribery: Consider a case where B = 5, ~Q = [1,1,2], and p = {Salad,

Fish,White}. Notice that we are using OV and we have three agents and 23 = 8

possible outcomes. In this instance there will, necessarily, be some outcomes that do

not have any vetoes. Therefore, we must make sure that p has no vetoes since the

winner set will contain only outcomes that have no vetoes. In this case we are limited

to only DV bribes. This means we cannot bribe Agent 1 as he has no dependent

variables. Unfortunately, Agent 1 is the only one vetoing p and we can’t change his

mind. Therefore, this is a “no” instance of our problem.

(OP-{IV +DV}-CLEVEL)-Bribery: Consider a case where B = 3, ~Q = [2,1,2], and p =

{Salad,Meat,White}. Currently, no agent has this as their top preference and p

is not winning. Notice that, in order to set Agent 1 to have p as his top preference

requires two bribes to independent variables. Since all variables for Agent 1 are at

level one out of the two levels of the CP-nets, the cost of this bribe is Q[1]× 2 = 4.

However, bribing either Agent 2 or Agent 3 requires a bribe at level one and a bribe

at level two and therefore the cost of the bribe for Agent 2 is Q[2]×(1×1+1×2) = 3

while Agent 3’s bribing cost is Q[3]× (1×1+1×2) = 6. We chose to bribe Agent

2 to now have p as his top candidate. This means that we have one vote each for p,

{Soup,Meat,Red}, and {Salad,Fish,White}. We have elevated p into the winning

set and spent less than our budget, so this is a “yes” instance.

4.4 Results

In the rest of the chapter we study the computational complexity of this problem, consid-

ering all possible combinations of winner determination rules in D ∈ {SM,OP,OV,OK},

bribery actions in A ∈ {IV,DV, IV +DV}, and cost schemes in C ∈ {CEQUAL,CFLIP,CLEVEL,

CANY}. Our results are summarized in Table 4.1 and Table 4.2. Note that in some cases we

are still missing results and we will address these gaps while we unfold our results.

120



We begin by looking at the complexity of winner determination in our domain. We

then consider the complexity of finding optimal bribery actions in our domain. After these

preliminaries, we consider each voting rule in turn and conclude our results section with

some extensions to non-binary domains.

4.4.1 Winner Determination and Changing a Vote

The computational complexity of the bribery problem is interesting only when it is easy

to determine the winner of an election, since otherwise bribery would be trivially hard.

Winner determination is easy to compute for all approaches we consider.

Theorem 4.4.1 Winner determination is in P for SM, OP, OV, and OK (when k is bounded

from above by a constant).

Proof. SM works issue-by-issue, and at each issue, it applies the majority voting rule.

As there are a polynomial number of issues, the overall procedure is in P.

For OP, we need to compute the optimal outcome for each acyclic CP-net, which is

polynomial. Then plurality is applied, in time polynomial in the number of voters.

The winner according to One-step Veto (OV) can be obtained by reversing each total

order in all cp-statements of the CP-nets. Thus, the optimal outcome of the new CP-net is

the worst outcome of the original one. Notice that in an acyclic CP-net we have exactly one

worst outcome. This reversal step takes time polynomial in the size of the CP-nets. After

the reversal step, we just choose an outcome which appears the smallest number of times

(possibly zero) as the optimal outcome of the reversed CP-nets. In some cases enumerating

the entire winning set could take exponential time. However, since we assume p wins all

ties we can determine if p is in the winning set by looking at the polynomial number of

candidates who receive vetoes. If p is not in the winner set, then we randomly choose

some other outcome receiving no vetoes as the winner of the election. This again takes

polynomial time with respect to the size of the input.

121



OK needs to get the top k outcomes from each CP-net. If k is bounded, this is easy

since the CP-nets are acyclic: each agent can just start from the optimal outcome and find

the best k outcomes by applying the next operation k− 1 times [17]. Therefore, we can

produce the top k lists and apply the voting rule in polynomial time. q

In a bribery scenario, the briber has a desired candidate p. To make p the overall winner,

the briber may need to ask some agents to change their current vote to a vote for p or to

vote for some other candidate, paying for this change according to the cost scheme. In non-

combinatorial bribery scenarios, agents specify their preferences explicitly and, therefore,

the cost of bribery is easy to compute. In the four cost schemes that we have proposed,

however, this computation is not so straightforward.

Theorem 4.4.2 Given a CP-net and an outcome p, determining if the CP-net can be

changed to make p its optimal outcome, and, if so, determining the minimum cost to

perform such a change, can be computed in polynomial time if we use the cost schemes

CEQUAL,CFLIP,CLEVEL, or CANY.

Proof. Assume we can use all bribery actions, IV +DV . Therefore, any CP-net can be

changed to vote for p (that is, to make p its optimal outcome).

For CEQUAL, if p is already the top outcome of the CP-net, the cost is 0, otherwise it

is 1. To find the p sweep through the CP-net and assign each variable to have the same

assignment as in p.

For CFLIP, we need to compute the minimum number of flips to be performed on the

cp-statements within the CP-net in order to make p the top outcome. Starting from the

independent issues, we flip the cp-statements which do not have the corresponding value

of p as their preferred value. We then proceed to each dependent variable, after all its

parents are processed, and do the same in its relevant cp-statement. At the end, p is the top

outcome and the number of flips performed is the minimum cost to make p win.

122



Table 4.1: Bribery complexity results for Sequential Majority and Weighted Sequential
Majority.

Sequential Maj. Theorem Weighted Sequential Maj. Theorem
CEQUAL NP-complete 4.4.4 NP-complete 4.4.5 and 4.4.6
CFLIP P 4.4.3 NP-complete 4.4.5 and 4.4.6

CLEVEL P 4.4.3 NP-complete 4.4.5 and 4.4.6
CANY P 4.4.3 NP-complete 4.4.5 and 4.4.6

For CLEVEL or CANY, finding the flips is the same as above but the cost takes into account

the levels or the cost of each flip.

Notice that this algorithm gives us the minimum set of flips, but the same result could

be achieved also by performing other useless flips. However, what we are interested in is

computing the minimum cost to change the CP-net.

If we only had access to IV or DV, as soon as a necessary flip cannot be performed, we

know that p cannot be the optimal outcome. q

4.4.2 Sequential Rules

In this section we consider the computational complexity of bribery when we determine

the winner via sequential majority. A summary of our results can be found in Table 4.1.

Theorem 4.4.3 (SM,IV,C)-Bribery, (SM,DV,C)-Bribery, and (SM,IV+DV,C)-Bribery are in

P when C ∈ {CFLIP, CLEVEL, CANY}.

Proof. We show a polynomial time algorithm for solving the bribery problem in an

instance of (SM, IV +DV,CFLIP)-Bribery. The argument is independent of the selection of

C and the same algorithm can be used for DV and IV bribery actions. We can determine

whether or not the outside agent can achieve its agenda in polynomial time. We provide an

algorithm to determine the cost of the optimal sequence of bribes

Given a profile (P,O), we consider the issues in the order O. For the first issue, we

compute the minimum number of flips to be performed in the CP-nets in order to achieve

123



a majority for the same value that appears in p for that issue. Since we are using SM, we

can select the agents to bribe by starting from the cheapest ones (according to ~Q), until we

achieve a majority for the considered issue. In fact, using SM, the resulting preferred value

for this issue will be set in all agents’ CP-nets (not just those where this value was most

preferred). This allows us to effectively separate the levels so we can consider bribery for

each variable independently of all other variables.

For each of the other issues in O we perform the same computation. We can ignore any

conditional dependencies; as long as we achieve our agenda at this level, our bribery actions

on a per agent basis will have no effect on the cost of changing an agents’ preference for

the next issue in O. This is because we must pass every issue at every level and passing an

issue sets its value in all agents’ CP-nets. Therefore, all effects farther down in the variable

ordering are the same for all agents and we can ignore them.

When all issues have been considered, the number of performed flips required to get

the correct majority for each issue is the cost of bribing so that p wins. The total cost is

within the budget ≤ B if and only if the bribery problem has a solution.

If we use the cost scheme CANY the choice of the agents to bribe for each issue still only

requires us to greedily select the cheapest agent at each level.

For CLEVEL we must consider the level of the variables when computing the cost for

each agent. However, since the topological order of any agents’ preference dependencies

must respect O we can traverse the variables in the order described in O. This will ensure

that we consider the variables in cost order for each agent and that we do not change a

variable before processing all variables it depends upon. Therefore, we can greedily select

the cheapest agents to bribe at every level with CLEVEL.

A very similar algorithm can be used for IV or DV by giving a cost of B+ 1 to an

agents’ bribery prices if p cannot be made its best outcome given the restrictions. q

With CEQUAL, the cost for changing a CP-net is always 1, no matter how many flips are

needed. Therefore, the decision of which agents’ CP-nets to change for a particular issue

124



is strictly related to this same decision for another issue: if we change the same agents’

CP-net for multiple issues, the cost will not increase. So, to compute the minimum bribery

cost, the computation we do for one issue depends on the computation for a different issue

since we are trying to minimize the total number of agents whose CP-nets we need to

modify. This makes the bribery problem computationally hard.

Recall the OPTIMAL LOBBYING (OL) problem introduced by Christian et al. [24].

Name: OPTIMAL LOBBYING (OL)

Given : An n×m 0/1 matrix E and a 0/1 vector ~x of length m where each column of E

represents an issue and each row of E represents a voter. We say E is a binary ap-

proval matrix with 1 corresponding to a “yes” vote and~x is the target group decision.

Parameter: k ∈ Z+: the number of agents to be influenced.

Question: Is there a choice of k rows of the matrix E such that these rows can be edited

so that the majority of votes in each column matches the target vector~x?

This problem is shown to be W [2]-complete via a reduction from k-DOMINATING SET

[24]. We give a polynomial reduction from OL to our bribery problem, thus showing that

our bribery problem is NP-complete [40]. In fact, since OL is W [2]-complete for parameter

k and our reduction is parameter preserving, all the bribery problems in the following proof

are W [2]-hard with parameter B.

Theorem 4.4.4 (SM, IV,CEQUAL)-Bribery, (SM,DV,CEQUAL)-Bribery, and (SM, IV +DV,

CEQUAL)-Bribery are NP-complete.

Proof. Membership in NP is an immediate consequence of Theorem 4.4.1 and a guess

and check algorithm.

To show completeness, we provide a polynomial reduction from OL. We start with

(SM, IV,CEQUAL)-Bribery. Given an instance (E,~x,k) of OL, we construct an instance of

125



(SM, IV,CEQUAL)-Bribery containing CP-nets with only independent variables. The set of

issues, m, is equal to the number of columns in E. For each row of E, we create a voter

with the preferences over the m variables as described in the row of E. Finally, we set the

price of bribery for each voter to be 1, the budget B = k, the weights of the agents all equal,

and the preferred outcome p =~x.

Thus, p wins the election if and only if there is a selection of k rows of E such that

~x becomes the winning agenda of the OL instance. Therefore (SM, IV,CEQUAL)-Bribery is

NP-complete.

The same reduction works for IV+DV as well. For DV, we choose an instance of the

bribery problem as above, except we add one more issue and each voter therefore has an

additional independent variable on which all others depend. The preference of all voters on

the new variable is 1 > 0. For the other variables, the corresponding row of E will provide

the preference associated to the value 1 of the new variable, while for the value 0 we give

the opposite preference. The last difference is that now p is 1~x. With this mapping, p wins

the election if and only if the given OL instance has a positive answer. q

With weighted agents, the winner of the election will be computed by a weighted major-

ity for each issue. We prove that bribery with all cost schemes is computationally difficult.

We denote by weighted-X the bribery problem X with weighted agents.

Faliszewski et al. [52] show NP-completeness of the plurality-weighted-$bribery, which

we state below, with a reduction from PARTITION to their single binary issue bribery prob-

lem.

Name: plurality-weighted-$bribery.

Given: A set C of candidates. A collection V of voters specified via their preference lists

(most preferred candidate), weights h1, . . . ,hm ∈ Z+, and prices $1, . . . ,$m ∈ Z+. A

distinguished candidate p ∈C and k ∈ Z+ (the budget).

126



Question: Is there a set B ⊆ {1, . . . ,m} such that ∑i∈B $i ≤ k and there is a way to bribe

the voters from B in such a way that p becomes a winner?

In fact, Faliszewski et al. showed this problem to be NP-complete for just two candidates.

The following theorem can be proven via polynomial reductions from plurality-weighted-

$bribery over two candidates to our problems.

Theorem 4.4.5 Weighted-(SM,A,C)-Bribery for A ∈ {IV, IV +DV} and C ∈ {CEQUAL,

CFLIP,CLEVEL,CANY} is NP-complete.

Proof. Membership in NP is an immediate consequence of Theorem 4.4.1 and a guess

and check algorithm.

We reduce the plurality-weighted-$bribery problem over two candidates to an instance

of weighted-(SM,IV,CEQUAL)-Bribery. We construct our instance with the same number

of voters (P = V ); the same costs (Q[i] = $i); weights (wi = hi); and the same budget

(B = k) as the original problem. In our instance we create only one issue. This issue is

an independent variable in our construction and the two values for the issue correspond

exactly to the two candidates. We assign the votes and p the same as in the instance of

plurality-weighted-$bribery.

The instance of our problem that we construct is exactly the given instance of plurality-

weighted-$bribery: our problem is a yes instance if and only if there is a solution to the

original problem. Therefore, weighted-(SM,IV,CEQUAL)-Bribery is NP-complete.

We can extend this proof for all variants of weighted-(SM,A,C)-Bribery where A ∈

{IV, IV +DV} and C ∈ {CEQUAL,CFLIP,CLEVEL,CANY}. Since we are only using one in-

dependent variable in the construction there is no difference between IV and (IV+DV).

Likewise, since there is only one variable and therefore only one variable level, the cost

scheme does not matter. q

We can also extend the result of Theorem 4.4.5 to the case of DV bribery.

127



Corollary 4.4.6 Weighted-(SM,DV,C)-Bribery where C ∈ {CEQUAL,CFLIP,CLEVEL,CANY} is

NP-complete.

Proof. Membership in NP is an immediate consequence of Theorem 4.4.1 and a guess

and check algorithm.

We apply the same mapping as shown in Theorem 4.4.5 to an instance of weighted-

(SM,DV,CEQUAL)-Bribery except for the definition of the variables in our instance. Instead

of only having one independent issue, we introduce an independent and dependent issue.

The preference of all voters on the independent variable is 1 > 0. We now map the pref-

erences of the instance of plurality-weighted-$bribery to the dependent variable when the

independent variable is set to 1. We set p to be 1x where x is the definition of p from

the instance of plurality-weighted-$bribery. Since we are using only DV there will be no

way to change the preference of any voter over the independent variable. Therefore, all

bribery will take place on the dependent variable. This single dependent variable has the

same candidate mapping as in the proof of Theorem 4.4.5. Therefore, there will be a so-

lution to our constructed problem if and only if there is a solution to the given instance of

plurality-weighted-$bribery and our problem is NP-complete.

We can extend this construction to any version of Weighted-(SM,DV,C)-Bribery where

C ∈ {CEQUAL,CFLIP,CLEVEL,CANY}. We can set the costs of bribery on the dependent vari-

ables in each of these cost schemes to work with the above reduction.

For CFLIP we set the entries of Q to be the same as in the construction for CEQUAL. Since

there is only one available bribery action for each voter, this will make the prices equivalent.

We can set the costs in the same way for CANY. For CLEVEL, each of the variables will be at

level 2 (since they are all dependent on the independent issue). Therefore, we can set the

entries of Q in the same way as for the other cost schemes. q

However, if we use the cost scheme CFLIP and we assume that the bribing costs are the

same for all voters, the bribery problem becomes easy.

128



Theorem 4.4.7 Weighted-(SM,IV,CFLIP)-Bribery, weighted-(SM,DV,CFLIP)-Bribery, and

weighted-(SM,IV+DV,CFLIP)-Bribery are in P when the bribing costs in ~Q are all the same.

Proof. We can use the same argument as in the proof of Theorem 4.4.3. Since voters are

weighted, we only need to achieve a weighted majority for each individual issue.

Since all the bribing costs at each level are the same with the CFLIP pricing function, the

cost to bribe any voter at any particular level is equal for all voters. We can therefore bribe

the voters from heaviest to lightest (in terms of the individual voters’ weight). This will

be an optimal sequence of bribes at each individual level and lead to the optimal bribery

scheme overall.

This is true no matter which bribery actions are allowed, since using IV or DV just

restricts the issues over which it is possible to perform a flip in the CP-nets.

q

4.4.3 One-Step Rules

In this section we will investigate the three one-step rules that we have introduced in this

chapter: OP, OV, and OK. We will consider each of these rules in turn and we will see that

these rules pose more significant challenges then the sequential rules. A summary of our

results can be found in Table 4.2.

One-step Plurality

Recall the MINIMUM COST FEASIBLE FLOW problem introduced in Section 2.1.2 [1].

Faliszewski [51] shows that plurality bribery in single issue elections with nonuniform cost

functions is in P through the use of flow networks. We showed a similar algorithm in The-

orem 3.2.17 for finding possible winners with bribery in round robin sports tournaments.

Both of these algorithm require the enumeration of all possible elements of the candidate

129



Table 4.2: Bribery and complexity results for one-step rules. OP(A) stands for voting rule
OP with bribery actions A, and similarly for OV and OK, OK* stands for OK when k is a
power of 2. In some cases we have not been able to provide lower bounds. In these cases
we note the upper bounds with ∈.

CEQUAL CFLIP

OP (IV) P (Thm. 4.4.8) P (Thm. 4.4.8)
OP (DV, IV+DV) P (Thm. 4.4.8) P (Thm. 4.4.8)

OV (IV) P (Thm. 4.4.12) P (Thm. 4.4.12)
OV (DV, IV+DV) P (Thm. 4.4.12) P (Thm. 4.4.12)

OK*(IV) P (Thm. 4.4.15) P (Thm. 4.4.15)
OK*(DV, IV+DV) P (Thm. 4.4.15) P (Thm. 4.4.15)

CLEVEL CANY

OP (IV) P (Thm. 4.4.9) ∈ NP (Thm. 4.4.10)
OP (DV, IV+DV) ∈ NP (Thm. 4.4.10) ∈ NP (Thm. 4.4.10)

OV (IV) P (Coro. 4.4.13) ∈ NP (Thm. 4.4.10)
OV (DV, IV+DV) ∈ NP (Thm. 4.4.10) ∈ NP (Thm. 4.4.10)

OK*(IV) P (Coro. 4.4.16) ∈ NP (Thm. 4.4.10)
OK*(DV, IV+DV) ∈ NP (Thm. 4.4.10) ∈ NP (Thm. 4.4.10)

set as part of the construction of the flow network. In our model, the number of candidates

can be exponential in the size of the input, so we cannot use that construction directly.

Theorem 4.4.8 (OP,A,C)-Bribery, where A ∈ {IV,DV, IV +DV} and C ∈ {CEQUAL,CFLIP},

is in P.

Proof. If the number of candidates, which is 2m, is polynomial in the number of voters

(n), we can directly use the construction in [51]. Therefore, we assume we have a number

of candidates that is superpolynomial in the number of voters. We show that a similar

technique using flow networks as in [51] can be used in the superpolynomial case while

still assuring a polynomial algorithm.

We can build our flow network without listing all candidates. Let candidate ci be safe

if score(ci)≤ score(p)−1. The key insight is that, at most n of the candidates will receive

votes. For each voter vi, we only need to consider the next n safe candidates enumerated in

cost order. This is because, in the worst case, we will have to redistribute the votes of all n

130



voters to candidates other than those currently receiving votes. We can safely assume that

we will redistribute the votes as cheaply as possible, so we need only consider, for each

voter, the ≤ n unsafe candidates (those receiving votes) and then at most n more.

We then construct a series of networks, one for each r ∈ {1, . . . ,n}. We want to know

whether, for any such r, p can be made a winner with exactly r votes without exceeding

B. If so, then the answer to the bribery question is yes. Otherwise, we reject. We show

that, for each r, the network can be constructed in time polynomial in the number of voters.

Since there are only n values of r of interest, this shows that the whole (Turing) reduction

can be performed in P.

To solve the decision problem for a given r, we transform this problem to a minimum-

cost flow problem [1] (and discussed in Section 2.1.2). In our graph, units of flow represent

votes and the minimum cost of the graph flow is the minimum cost of bribery necessary to

elect p with exactly r votes.

We describe the construction similarly to Theorem 3.2.17 in Chapter 3. The network

has a source s, a sink t, and two internal “layers” of nodes. We will describe the construc-

tion, moving through these three internal layers in turn.

The first layer has one node for each voter v1, . . . ,vn. There are also n edges (s,vi), with

capacity 1 and cost 0 giving one vote to every voter.

The second layer models the profile modified by the bribery, where each voter can

maintain or change his current vote. The important point is that the other non-voted can-

didates that we do not include in the second layer would never be used in the new profile

obtained through bribery since either they cost too much or they already receive too many

votes. Providing n safe candidates for each voter is enough, since there are n voters and in

the worst case each of them votes for a different candidate. In the worst case there are n−1

unsafe candidates before we encounter the first safe candidate. Once we reach the first safe

candidate we enumerate n− 1 more candidates. Therefore, we only need to enumerate a

polynomial number of candidates.

131



The second layer of nodes represents the subset of the candidates that vi can make his

top candidate. For each voter vi, we define a subset Ci of candidates consisting of p, the

candidate that vi currently has as his top outcome, all candidates that currently receive a

vote (at most n), and the n safe, cheapest candidates for this voter, according to the cost

scheme, for a total of at most 2n+1 candidates. The second layer of nodes in the network

is the union, S, of all the Cis. The set S contains p and all ≤ n top-choice candidates, plus

at most n candidates for each of the n voters. Thus, |S| ≤ (n2 +n+1).

For each voter node vi in the first layer, we build an edge to every node in that voter’s

set of considered candidates in S. The edge from vi to c j has capacity +∞ and cost equal

to the cost to bribe vi to vote for c j.

Finding the candidates to include for each voter and the cost of bribery for the particular

voter/candidate pair takes polynomial time no matter the cost scheme. Finding the voted

candidates is easy since finding the optimal outcome in acyclic CP-nets takes polynomial

time. In order to find the n cheapest safe candidates for CEQUAL we start from the optimal

outcome for each voters’ CP-net and move down in a linearization of the outcome ordering.

This method takes polynomial time, as shown by Brafman et al. [17]. For CFLIP, we first

consider the candidates which can be obtained by performing one flip in the CP-net and

then computing the new optimal outcome. Then we proceed by increasing the number of

flips, until we collect n non-voted candidates.

Given a voter, computing the cost for such a voter to vote for one of the collected

candidates is easy for the non-voted candidates, since they are obtained by using the cost

schemes. For CEQUAL the cost is always 1. For the voted candidates, including p, it is easy

to compute the cost if we use CFLIP as shown in Theorem 4.4.2.

To enforce the constraint that no candidate besides p can receive more than r votes we

build an edge from each candidate to the sink with capacity r. The cost is 0 for the edge

from p to the sink, while for all other candidates it is a large integer M to force as much

flow through the node p as possible.

132



If we had included nodes for all the candidates in the second layer, we would have used

a network equivalent to the one used in the proof of Theorem 3.1 in [51], which shows that

there is a minimum cost flow of value n if and only if there is a way to solve the bribery

problem. However, since we have a number of candidates which is superpolynomial in

the size of the input, we would not have a polynomial algorithm. By including only the

cheapest n alternative candidates for each voter, along with p and all the voted candidates,

the result still holds. Assume there is a minimal flow in the larger network which goes

through one of the nodes which we omit. This would mean that a voter has been forced

to vote for another, more expensive, non-voted candidate since all its cheapest candidates

already had r votes each. But, this is not possible, since we have only a total of n−1 votes

that can be given by the other voters, and we provide n non-voted candidates.

We build, at worst, n networks with O(n2) nodes and edges. Since min cost feasible

flow problem can be solved in O(|V ||E| log(|V |)), the overall running time of this method

is polynomial in the size of the CP-nets and n. q

Leveraging the above construction, we get the following theorem.

Theorem 4.4.9 (OP,IV,CLEVEL)-Bribery is in P.

Proof. The result of Theorem 4.4.8 also holds when we use the cost schemes CLEVEL or

CANY with the IV bribery criteria.

When not all variables are independent and we use IV, it may be impossible to find

n alternative candidates for a voter, since that voter may be able to vote for fewer than n

candidates given the restrictions on the bribery actions. In this case we provide all possible

alternative candidates for the voter (since we may have to shuffle his vote).

For any set of voters we only need to be able, in polynomial time, to enumerate the next

n possible votes in cost order. If we can achieve this enumeration then we are guaranteed,

by use of the pigeon hole principal, that all voters can be moved as in Theorem 4.4.8. For

the CLEVEL criteria we can enumerate the next safe candidate in polynomial time. Notice

133



that, on a per agent basis, all independent variables will have the same bribing cost. Specif-

ically, for some agent i, the cost to make any bribery action on any single independent

variables will be k×Q[i], where k is the number of levels in agent i’s CP-net. This means

that, when only IV is used, CLEVEL is equivalent to CFLIP.

Now that we can enumerate the next candidate in cost order on a per agent basis, we

directly use the construction in Theorem 4.4.8. Therefore, (OP,IV,CLEVEL)-Bribery is in P.

q

There are combinations of cost schemes and bribery actions for which we do not have a

result for any of our one-step rules. Specifically, we have no results for CLEVEL with bribery

actions involving DV and CANY with any bribery actions. However, all these problems are

in NP by virtue of Theorem 4.4.1 and guess and check algorithms. Given an instance of

the problem and a set of bribes, we can check whether p wins in polynomial time.

Theorem 4.4.10 (D,A,CLEVEL)-Bribery with A ∈ {DV, IV +DV} and (D,A,CANY)-Bribery

with A ∈ {IV,DV, IV +DV} are in NP when D ∈ {OP,OV,OK}.

The following theorem leads us to the conjecture that all the problem variants listed in

Theorem 4.4.10 are hard when using CANY. Recall the SUBSET SUM PROBLEM statement

from Garey and Johnson [65].

Name: SUBSET SUM

Given: A set H ∈ Z+, h1, . . . ,hk, and a target S ∈ Z+.

Question: Does there exist a subset I ⊆ {1, . . . ,k} such that ∑i∈I hi = S?

Using this problem we can show the following.

Theorem 4.4.11 Computing the n cheapest next candidates with CANY is NP-hard.

134



Proof. We map a given SUBSET SUM instance (H,S) in the problem of finding the next

cheapest voter in an instance of (D,A,CANY)-Bribery. Consider a domain with m = k binary

features. We set the cost mi for some voter vi on feature fi to be hi, his current vote to 0m,

and set the budget B to S. If we were to enumerate vi’s next n cheapest candidates, we will

need to find a candidate such that the cost of all the flips will be exactly B = S. In order

to perform this enumeration we need to solve an NP-complete sub-problem. Therefore

computing the n cheapest next candidates with CANY is NP-hard. q

Theorem 4.4.11 does not clarify the results for CLEVEL and the dependent variable

bribery schemes. These problems create an instance similar to CANY, however, the price

structure for CLEVEL must be strictly decreasing as we go down levels. This does not give

us the freedom to obviously embed a SUBSET SUM instance like we constructed in the

proof of Theorem 4.4.11. We are continuing to study the complexity of problems involv-

ing CLEVEL and dependent variable bribery.

One-step Veto

The OV provides a particular set of challenges as noted in Theorem 4.4.1 because we

cannot necessarily enumerate the entire winning set. However, as we show, bribery with

the OV rule is still computationally easy in most cases.

Theorem 4.4.12 (OV,A,C)-Bribery is in P if A ∈ {IV,DV, IV +DV} and

C ∈ {CEQUAL,CFLIP}

Proof. The choice of IV, DV, or IV+DV, does not matter in this context. We can either

change a voters’ last place candidate or we can’t, the method doesn’t matter.

We note that to compute the worst candidate for every voter it is sufficient to reverse

the orderings in all the cp-statements as discussed in Section 4.1.2. Let us call any CP-net

on which this is performed a reversed CP-net. If p has no vetoes then we trivially accept

(since he is, at worst, tied for a winning position). Otherwise we break into two cases:

135



when n < 2m we must bribe all vetoes for p to some other candidate. In this case there

will necessarily be some candidates that receive no vetoes. Therefore, in order for p to

win, he must have no vetoes. When n ≥ 2m we consider the reversed CP-nets and we use

an algorithm based on a flow network similar to the one in Theorem 4.4.8 to redistribute

vetoes. Note that the number of candidates, in this case, is polynomial in the size of the

input, and thus we can use all of the candidates in the flow network. We consider one

network for each r ∈ {0, . . . ,n}. The network is the same as the one in Theorem 4.4.8

except that nodes not representing p have capacity ∞ into the sink. q

Additionally, we can state the following corollary similar to Section 4.4.3. The proof is

a straightforward combination of Theorem 4.4.9 and the observation in Theorem 4.4.12.

Corollary 4.4.13 (OV,IV,CLEVEL)-Bribery is in P.

One-step k-Approval

In One-step k-approval (OK) we aggregate the n profiles by taking the top k outcomes

from each agents’ profile. In a CP-net, the top outcome is followed by a series of outcomes

obtained through a sequence of worsening flips. Since CP-nets induce a partial order, we

mean the top k according to some linearization. Here we assume that the linearization is

according to variable order and then lexicographically. Other linearizations would produce

the same results. In the traditional bribery domain, the bribery problem for k-approval,

when k ≥ 3, is NP-complete when all the bribery costs are equal [52]. However, when

agents’ preferences are expressed as CP-nets, bribery schemes for k-approval can be com-

puted in polynomial time under certain conditions. First we need a lemma.

Lemma 4.4.14 Given an acyclic CP-net X and a constant linearization scheme across all

agents and k = 2 j, the top k outcomes of a X are all the outcomes differing from the top

one on the value of exactly j issues. Moreover, given two CP-nets in the same profile and

with the same top element, they have the same top k elements.

136



Proof. Given a CP-net, consider any order of its issues which is compatible with its

dependency graph. One can think of a CP-net as a binary string with elements labeled

x1 > · · · > xi > xi+1 > · · · > xm regardless of the dependencies that are present (imagine

the last variable in the ordering is the lowest bit of the binary string). For a given top

outcome (assignment to variables x1, . . . ,xm) the next outcome will be the one with x̄m and

variables x1, . . . ,xm−1 maintaining their assignments. That is, the next outcome in terms of

worsening flips will be the outcome that varies only on the last element. If k = 2 j, then

the top k outcomes have the same values for issues x1, . . . ,xm− j and differ on the values of

issues xm− j+1, . . . ,xm. Since we can use the same topological order for any two CP-nets in

a profile, if two CP-nets have the same top outcome then they have the same top k outcomes

when k is a power of 2. q

A practical use of this result, apart from its use in the following proof, is for the elici-

tation problem for CP-nets: if the ordering over the issues is known, then we only need to

elicit the top candidate in order to know a voters’ top k candidates, when k is a power of 2.

Theorem 4.4.15 When k = 2 j, (OK,A,C)-Bribery is in P if A ∈ {IV,DV, IV +DV} and

C ∈ {CEQUAL,CFLIP},

Proof. When k is a power of two Lemma 4.4.14 tells us that, if we fix the top outcome,

the rest of the outcomes must follow in some unique order. Therefore, we treat the top

k outcomes as one bundle (group of candidates that are all approved together). For each

voter we will need to find n cheapest un-voted bundles. We can do this in polynomial time

as all we require is the ability to apply next some multiple of k times. We then apply the

algorithm in the proof of Theorem 4.4.8 in order to decide the cheapest bribery scheme to

elevate the bundle that includes p into the winning set. q

Again, similar to our results for OV, we can state the following corollary.

Corollary 4.4.16 When k = 2 j, (OK,IV,CLEVEL)-Bribery is in P.

137



4.4.4 Manipulation and Non-binary Domains

We will now show that, in the setting we have considered, manipulation is easy for two of

the voting procedures.

Theorem 4.4.17 Weighted-CCM and unweighted-CCM are in P for SM, OP, OV, and OK

(when k = 2 j).

Proof. Note that in the CCM problems (weighted or unweighted) we are given two sets

of voters, X and Y . We are asked to set the CP-nets of Y in such a way as to ensure a victory

for a candidate p. All the voters in Y have completely unspecified CP-nets.

When voting with SM and OP the optimal thing to do is to set the CP-nets of voters in

Y in such a way that p is their optimal outcome. This can be done in polynomial time. If p

can win with all the votes from Y then we accept, otherwise we reject.

When voting with OV we can count how many vetoes p has in the set X . If p currently

receives no vetoes then we set the votes of Y to veto any arbitrary candidate that is not p.

If the total number of vetoes p receives in X is such that we can evenly distribute the votes

of Y among the other candidates so that every candidate has as many or more vetoes than p

then we can make p a winner. We can do this in polynomial time since we must check each

voter’s veto and the number of voters is polynomial. However, if the number of vetoes for

p is greater than the number we can apply to all other candidates, then we cannot make p a

winner.

For OK when k = 2 j we can leverage the observation in Lemma 4.4.14. In this case,

as in the case for SM and OP, we set all the voters in Y in such a way that p is the top

candidate. Since we have no control over the next candidates this is the optimal action.

If p can win with all the votes from Y assigned in the above ways then we accept,

otherwise we reject. q

Up to this point we have required that all variables in the domain be binary. While this

is a convenient and highly expressive model, we wish to relax this assumption. This allows

138



the sequential composition of general voting rules (not just majority) as in other work on

voting in sequential domains [82]. This allows for interesting extensions in our domain

and may lead to some novel insights about bribery and manipulation in sequential domains

when agent’s preferences are represented as CP-nets.

In what follows, each issue has a domain with two or more values and the CP tables

specify strict total orderings on such domains. For each variable x ∈ M, we associate a

domain D(x) of values to that variable. When using the DV bribery action, we fix some

part of the linear order. The briber will modify the linear orders through a sequence of

swaps, much like in the swap bribery domain described by Elkind et al. [43]. Note that

editing dependencies could change the linear order on a particular level.

Now we can use different voting rules at every level. We associate to a profile (P,O) a

vector R of voting rules 〈r1, . . . ,rm〉. At level i we use voting rule ri to aggregate the prefer-

ences at that level and propagate the winning outcome at that level to the next level for all

agents’ CP-nets. This is similar to Della Pozza et al.’s [37] definition for sequential voting

rules with multivariate domains with soft constraints. Winner determination in this domain

is polynomial if evaluation of the underlying voting rules are polynomial procedures and

we can use the same algorithm as in Theorem 4.4.1. With this model we can show some

additional theorems about sequential voting rules.

Theorem 4.4.18 If bribery or CCM is computationally hard for any rule in 〈r1, . . . ,rm〉

then bribery is hard for the sequential rule.

Proof. This property can be seen from a direct example. Suppose that we had a voting

scenario with two levels: the first to be aggregated by any easy rule shown in this section

and the second level by any hard rule (such as the Borda rule [12, 38]). Since we are using

a sequential rule, the first level will be computationally easy to manipulate since we can

ignore effects on the variables of the second level. However, the second level will remain

139



computationally difficult to manipulate. Therefore, the inclusion of any hard rule in the

sequential rules R makes bribery hard for the overall scenario. q

Theorem 4.4.19 If bribery or CCM is easy for every rule in 〈r1, . . . ,rm〉 then bribery is

easy for the sequential rule.

Proof. This follows from the separability property shown in Theorem 4.4.3. Since the

levels of the ordering O can be treated independently, the problem separates into a sequence

of independent bribery problems. If each one of these sub-problems are computationally

easy, the entire sequence is computationally easy because we must win at every level. q

4.5 Observations

The results of our study are summarized in Table 4.1 and Table 4.2. We note that not all our

results are in these tables, since some of the proofs of properties and interesting sub-cases

do not neatly fit into tabular form. Additional results not appearing in our tables are our

results for complexity of the CCM problem in sequential domains and our results about

sequential rules with non-binary issues.

We show that SM bribery is easy except when we use CEQUAL. However, when voters

are weighted, bribery for SM is almost always difficult. OP and OV bribery is easy except

for the two cases we have CLEVEL with any variant of DV or any case with CANY. In these

cases, we do not have a formal result although we believe the problem is difficult. Bribery

is easy also for OK when k is a power of 2. This is particularly surprising at first sight,

since bribery for k-approval in a non-combinatorial setting is difficult.

We have also shown several interesting properties of acyclic CP-nets that can be lever-

aged for computational and preference elicitation reasons. In fact, when agents express

their preferences as acyclic compatible CP-nets, there are cases of the bribery problem that

become computationally easier than the single issue domains, since such CP-nets have a

restricted expressive power in terms of the orderings they can induce.

140



4.6 Summary

In this chapter we have studied the complexity of bribery and manipulation problems in

elections with combinatorially structured domains where agents’ express their preferences

as CP-nets. To perform this study we introduced four cost schemes, three bribery schemes,

and two broad classes of voting rules for combinatorial domains. This chapter represents

novel work in that we are the first to extend the bribery and manipulation problems to

combinatorially structured domains. In general we find that bribery in these settings is

computationally easy for all the non-weighted sequential rules and many of the one-step

rules. We are continuing to extend this work with studies of additional voting rules for

the one-step instances, allowing domains with non-binary variables, and investigating the

possibility of the bribery actor being able to add conditional preferences to the individual

agents.

The complexity questions we have answered in this chapter are unsettling. We have

seen that it may be computationally easy to affect elections in domains of these types. At

first glance, this is odd since we have the possibility of an exponential number of candi-

dates with respect to the size of the problem input. However, as we have seen, we can

effectively work around this possible computational barrier. Our results may be due to an

over-constrained model and our continuing work will address this issue.

In this chapter and the previous chapter we have focused on the theoretical implications

of the security of election systems. We have established some baselines as to the computa-

tional complexity of reasoning in a variety of bribery domains. However, we are left with

the underlying question of whether or not our results are applicable in actual elections (ei-

ther involving people or multiagent systems). We dive into this question of practicality with

the next chapter that looks at elections with real data and seeks to understand the empirical

implications of our theoretical results.

Copyright c© Nicholas Mattei, 2012.

141


	Abstract
	Title Page
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Main Contributions and Related Publications
	1.3 Structure of the Dissertation

	2 Preliminaries
	2.1 Mathematical Background
	2.1.1 Computational Complexity
	2.1.2 Flow Networks

	2.2 Social Choice and Preference Aggregation
	2.2.1 Voting and Common Voting Rules
	2.2.2 Affecting Elections: Bribery, Manipulation and Control


	3 Bribery and Manipulation with Uncertain Information
	3.1 Majority Voting and Multiple Referenda
	3.1.1 Initial Model
	3.1.2 Bribery Methods
	3.1.3 Evaluation Criteria
	3.1.4 Basic Probabilistic Lobbying Problem
	3.1.5 Issue Weighting
	3.1.6 Results
	3.1.7 Observations

	3.2 Sports Tournaments and Ranking Problems
	3.2.1 Model Definition
	3.2.2 The Probabilistic Tournament Bribery Problem
	3.2.3 Results
	3.2.4 Observations

	3.3 Summary

	4 Bribery and Manipulation in Combinatorial Domains
	4.1 Voting in Combinatorial Domains
	4.1.1 Structured Preferences
	4.1.2 Winner Determination and Voting with CP-nets

	4.2 Bribery and Manipulation
	4.2.1 Bribery Actions
	4.2.2 Cost Schemes

	4.3 The Combinatorial Bribery Problem
	4.4 Results
	4.4.1 Winner Determination and Changing a Vote
	4.4.2 Sequential Rules
	4.4.3 One-Step Rules
	4.4.4 Manipulation and Non-binary Domains

	4.5 Observations
	4.6 Summary

	5 Empirical Analysis of Voting Rules and Election Paradoxes
	5.1 Motivation
	5.2 Survey of Existing Datasets
	5.3 The New Data
	5.4 Analysis and Discussion
	5.4.1 Preference Cycles
	5.4.2 Domain Restrictions
	5.4.3 Voting Rules
	5.4.4 Statistical Models of Elections

	5.5 Observations and Summary

	6 Conclusions and Future Directions
	Bibliography
	Vita

