
Chapter 3 Bribery and Manipulation with Uncertain Information

This chapter details work on probabilistic models of lobbying in environments with mul-

tiple referenda and sports tournaments. This work includes model building, aggregation

methods, and complexity results for the given models and methods.

Section 3.1 develops a novel and flexible model to represent majority voting with un-

certain information. In this section we provide a classification of the complexity of finding

efficient bribery schemes given a set of voters. Their individual preferences are represented

as probability distributions over a set of issues, their prices for changing their preferences,

and a budget. Much of this material is available both as a conference publication [45] and

a longer version is available as a technical report [46]. This first section also develops three

different ways in which an outside actor can channel money to the individual voters and

establishes three different criteria to evaluate the outcome of a vote in settings with un-

certain information. We show that, depending on the particular combination of evaluation

and bribery models chosen, the nine problems range in complexity from polynomial time

to NP-complete; these results are summarized in Table 3.1 and Table 3.2. This difference

reveals that modeling choices can have significant effects on the complexity of calculating

efficient bribery schemes.

Section 3.2 develops a novel and flexible model to represent sports tournaments and

competitions. In this section we show a classification of the complexity of finding efficient

bribery schemes for three common types of sports tournaments over five distinct prob-

lem variants given a set of teams, their probabilities of each possible win, and prices for

decreasing their competitive output (purposefully losing or underperforming in a match).

This work has been previously published and is available as a conference publication [87].

The evaluation complexity of these problems range from polynomial time to NPPP and is

summarized in Table 3.3. The results show that in some cases the added uncertainty in-
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creases the complexity of manipulating sports tournaments, while in other cases it does not.

While this increase in complexity is not uniform across all tournament types, the change

shows strong evidence that reasoning in domains with uncertain data leads to an increase

in reasoning complexity.

3.1 Majority Voting and Multiple Referenda

In most democratic political systems, laws are passed by elected officials who are supposed

to represent their constituencies. Individual entities such as citizens or corporations are not

supposed to have undue influence in the wording or passage of a law. However, they are

allowed to make contributions to representatives, and it is common to include an indication

that the contribution carries an expectation that the representative will vote a certain way

on a particular issue.

Many factors can affect a representative’s vote on a particular issue. There are the rep-

resentative’s personal beliefs about the issue, which presumably were part of the reason

that the constituency elected them. There are also the campaign contributions, communi-

cations from constituents, communications from potential donors, and the representative’s

own expectations of further contributions and political support [83].

It is a complicated process to reason about. Earlier work (see the references given in

Chapter 2) considered the problem of meting out contributions to representatives in order to

pass a set of laws or influence a set of votes. However, the earlier computational complexity

work by Christian et al. [24] and others [52, 110] on this problem made the assumption

that a politician who accepts a contribution will in fact—if the contribution meets a given

threshold—vote according to the wishes of the donor.

It is said that “an honest politician is one who stays bought,” but that does not take

into account the ongoing pressures from personal convictions and opposing lobbyists and

donors. We consider the problem of influencing a set of votes under the assumption that

we can influence only the probability that the politician votes as we desire.
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There are several axes along which the picture is complicated in realistic scenarios.

To describe these formally, we introduce various evaluation criteria and bribery methods.

The first is the notion of sufficiency: What does it mean to say we have donated enough

to influence the vote? Does it mean that the probability that a single vote will go our

way is greater than some threshold, or that the probability that all the votes go our way is

greater than that threshold? We formally define and discuss these and other criteria in the

section on evaluation criteria (Section 3.1.3). In particular, we consider three methods for

evaluating the outcome of a vote given voters’ probability of voting “yes” on a particular

issue.

Strict Majority (SM): A vote on an issue is won by a strict majority of voters having a

probability of accepting this issue that exceeds a given threshold.

Average Majority (AM): A vote on an issue is won exactly when the voters’ average

probability of accepting this issue exceeds a given threshold.

Probabilistic Majority (PM): A vote on an issue is won exactly when the sum of the

probabilities of possible futures (i.e., of possible scenarios in which a strict majority

of voters accepts this issue) exceeds a given threshold.

How does one donate money to a campaign? In the United States there are several laws

that influence how, when, and how much a particular person or organization can donate to a

particular candidate. We examine ways in which money can be channeled into the political

process in the section on bribery methods (Section 3.1.2). In particular, we consider three

methods that an actor (called “The Lobby”) can use to influence the voters’ preferences of

voting for or against multiple issues.

Microbribery (MB): The Lobby may choose which voter to bribe and on which issue in

order to influence the outcome of the vote.
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Issue Bribery (IB): The Lobby may choose which issues to support, and, for each issue

supported, the funds are equally distributed over all the voters.

Voter Bribery (VB): The Lobby may choose which voters to bribe, and, for each voter

bribed, the funds are equally distributed over all the issues.

The voter bribery method is due to Christian et al. [24], who were the first to study

lobbying in the context of direct democracy where voters vote on multiple referenda. Their

“Optimal Lobbying” problem (denoted OL) is a deterministic and unweighted variant of

the lobbying problems that we present in this chapter. A generalized problem described by

Christian et al., the “Optimal Weighted Lobbying” (OWL) problem, which allows different

voters to have different prices and so generalizes OL, can be expressed as and solved via the

“binary multi-unit combinatorial reverse auction winner-determination problem”(see [114]

for its definition).

The microbribery method in the context of lobbying—though inspired by the different

notion of microbribery than Faliszewski et al. [53–55] introduced in the context of bribery

in voting—is new to this paper. As described in this section, microbribery more closely

resembles the bribery methods discussed in Faliszewski [51] and Christian et al. [24] than

any other existing model as we allow for individually priced voters and the novel addition

of allowing voters prices to range based on the amount of change.

In Section 3.1.1 we formally describe our model of reasoning about bribery in voting

with multiple referenda where voters express their probabilities of voting for or against

each issue. In Section 3.1.2 we formally describe the three bribery methods at the disposal

of The Lobby. In Section 3.1.3 we then describe three different evaluation criteria for this

scenario. Section 3.1.4 formally states the nine decision problems we study in this domain

while Section 3.1.5 formally states an instance of the problem where The Lobby expresses

their preferences as weights over individual issues. Section 3.1.6 details our complexity

results and ends with a few observations about the change in reasoning complexity when
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models move from deterministic setting to models of uncertain information.

3.1.1 Initial Model

We begin with a simplistic version of the PROBABILISTIC LOBBYING PROBLEM (PLP, for

short), in which voters start with initial probabilities of voting for an issue and are assigned

known costs for increasing their probabilities of voting according to The Lobby’s1 agenda

by each of a finite set of increments. The question, for this class of problems, is: given the

above information, along with an agenda and a fixed budget B, can The Lobby target its

bribes in order to achieve its agenda?

The complexity of the problem seems to hinge on the evaluation criterion for what it

means to “win a vote” or “achieve an agenda.” We discuss the possible interpretations of

evaluation and bribery later in this section. First, however, we will formalize the problem

by defining data objects needed to represent the problem instances. A similar model was

first discussed by Reinganum [110] in the continuous case and we translate it here to the

discrete case. This will allow us to present algorithms for, and a complexity analysis of,

the problem.

Let Qm×n
[0,1] denote the set of m×n matrices over Q[0,1] (the rational numbers in the in-

terval [0,1]). We say P ∈ Qm×n
[0,1] is a probability matrix (of size m×n), where each entry

pi, j of P gives the probability that voter vi will vote “yes” for referendum (synonymously,

for issue) r j. The result of a vote can be either a “yes” (represented by 1) or a “no” (rep-

resented by 0). Thus, we can represent the result of any vote on all issues as a 0/1 vector

~X = (x1,x2, . . . ,xn), which is sometimes also denoted as a string in {0,1}n.

We associate with each voter/issue pair (vi,r j) a discrete price function ci, j for changing

vi’s probability of voting “yes” for issue r j. Intuitively, ci, j gives the cost for The Lobby of

raising or lowering (in discrete steps) the ith voter’s probability of voting “yes” on the jth

issue. A formal description is as follows.
1In this chapter we use The Lobby to represent any outside agent attempting to manipulate the vote. This

is in keeping with other work in the ComSoc community [52].
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Given the entries pi, j = ai, j/bi, j of a probability matrix P ∈ Qm×n
[0,1] , where ai, j ∈ N =

{0,1, . . .}, bi, j ∈ N+ = {1,2, . . .}, and ai, j ≤ bi, j, choose some k ∈ N such that k + 1 is

a common multiple of all bi, j, where 1 ≤ i ≤ m and 1 ≤ j ≤ n, and partition the prob-

ability interval [0,1] into k + 1 steps of size 1/(k+1) each.2 The integer k will be called

the discretization level of the problem. For each i ∈ {1,2, . . . ,m} and j ∈ {1,2, . . . ,n},

ci, j : {0,1/(k+1),2/(k+1), . . . , k/(k+1),1} → N is the (discrete) price function for pi, j, i.e.,

ci, j( /̀(k+1)) is the price for changing the probability of the ith voter voting “yes” on the

jth issue from pi, j to /̀(k+1), where 0≤ `≤ k+1. Note that the domain of ci, j consists of

k+2 elements of Q[0,1] including 0, pi, j, and 1. In particular, we require ci, j(pi, j) = 0, i.e.,

a cost of zero is associated with leaving the initial probability of voter vi voting on issue r j

unchanged. Note that k = 0 means pi, j ∈ {0,1}, i.e., in this case each voter either accepts

or rejects each issue with certainty and The Lobby can only flip these results. This special

case in our problem definition encompasses the Optimal Lobbying problem of Christian

et al. [24]. The image of ci, j consists of k+ 2 nonnegative integers including 0, and we

require that, for any two elements a,b in the domain of ci, j, if pi, j ≤ a≤ b or pi, j ≥ a≥ b,

then ci, j(a)≤ ci, j(b). This guarantees monotonicity on the prices.

We represent the list of price functions associated with a probability matrix P as a table

CP, called the cost matrix, whose m · n rows give the price functions ci, j and whose k+ 2

columns give the costs ci, j( /̀(k+1)), where 0 ≤ ` ≤ k+1. Note that we choose the same k

for each ci, j, so we have the same number of columns in each row of CP. The entries of CP

can be thought of as “price tags” indicating what The Lobby must pay in order to change

the probabilities of voting.

The Lobby also has an integer-valued budget B and an “agenda,” which we will denote

as a vector ~Z ∈ {0,1}n for n issues, containing the outcomes The Lobby would like to see

on these issues. For The Lobby, the prices for a bribery that moves the outcomes of a
2There is some arbitrariness in this choice of k. One might think of more flexible ways of partitioning

[0,1]. We have chosen this way for the sake of simplifying the representation, but we mention that all that
matters is that for each i and j, the discrete price function ci, j is defined on the value pi, j, and is set to zero
for this value.
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referendum in the wrong direction do not matter. Hence, if ~Z is zero at position j, then

we can set ci, j(a) = −− (indicating an unimportant entry) for a > pi, j, and if ~Z is one at

position j, then we can set ci, j(a) = −− (indicating an unimportant entry) for a < pi, j.

Without loss of generality, we can also assume that ci, j(a) = 0 if and only if a = pi, j.

For simplicity, we may assume that The Lobby’s agenda is all “yes” votes, so the target

vector is ~Z = 1n. This assumption can be made without loss of generality, since if there is

a zero in ~Z at position j, we can flip this zero to one and also change the corresponding

probabilities p1, j, p2, j, . . . , pm, j in the jth column of P to 1− p1, j,1− p2, j, . . . ,1− pm, j.

(See the evaluation criteria in Section 3.1.3 for how to determine the result of voting on a

referendum.) Moreover, the rows of the cost matrix CP that correspond to issue j have to

be mirrored, that is, the prices have been flipped so we are attempting to achieve all yes’

instead of a mix of yes and no votes.

Example 3.1.1 Consider the following problem instance with k= 9 (so there are k+1= 10

steps), m = 2 voters, and n = 3 issues. We will use this as a running example for the rest

of this section. In addition to the above definitions for k, m, and n, we give the following

probability matrix P and cost matrix CP for P. This example is normalized for an agenda of

~Z = 13, which is why The Lobby has no incentive for lowering the acceptance probabilities,

so those costs are omitted below.

Our example consists of a probability matrix P:

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.4 0.7 0.4
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and the corresponding cost matrix CP:

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140

c1,2 −− −− −− 0 10 70 100 140 310 520 600

c1,3 −− −− −− −− −− 0 15 25 70 90 150

c2,1 −− −− −− −− 0 30 40 70 120 200 270

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450

In Section 3.1.2, we describe three bribery methods which are three specific ways in

which The Lobby can influence the voters. These will be referred to as microbribery (MB),

issue bribery (IB), and voter bribery (VB). In addition to the three bribery methods de-

scribed in Section 3.1.2, we define three ways of evaluating a set of votes. These evaluation

criteria are defined in Section 3.1.3 and will be referred to as strict majority (SM), average

majority (AM), and probabilistic majority (PM). It is important to formalize the notion

of winning in this problem due to our modeling of uncertainty. Given different types of

information agents can choose to optimize over different realizations of systems that con-

tain uncertainty. This method of examining different decision strategies is in keeping with

other works on game theory and decision making under uncertainty, see Luce and Raiffa

for a more complete treatment [84]. The nine basic probabilistic lobbying problems we

will study (each a combination of MB/IB/VB bribery under SM/AM/PM evaluation) are

defined in Section 3.1.4, and a modification of these basic problems with additional issue

weighting is introduced in Section 3.1.5.

3.1.2 Bribery Methods

We begin by formalizing the bribery methods by which The Lobby can influence votes on

issues. We will define three methods for donating this money.
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Microbribery (MB)

The first method at the disposal of The Lobby is microbribery. Though our notion of mi-

crobribery was inspired by the work of Faliszewski et al. [53–55], it should not be confused

with their definition of the term “microbribery,” used in the context of bribing “irrational”

voters in Llull/Copeland elections. In the Llull/Copeland elections, voters are represented

via binary preference relations that may or may not be transitive. Microbribery in the

model defined by Faliszewski et al. [53–55] allows the briber to flip single entries in the

voters’ preference tables possibly making each voter irrational (a voter with non-transitive

preferences). Microbribery is the editing of individual elements of the P matrix according

to the costs in the CP matrix. Thus The Lobby picks both which voter to influence and

on which issue to influence that voter. This bribery method allows the most flexible ver-

sion of bribery defined in this document. It generally models private donations made to

candidates in support of specific issues from either Political Action Committees (PACs) or

interested individual parties. This method of contribution, in some cases, has an impact on

an individual’s platform or voting beliefs [48].

More formally, if voter i is bribed with d dollars on issue j, then all entries ci, j[`] are

updated as follows:

ci, j[`] :=

 −− if(ci, j[`] =−−)∨ ((ci, j[`]−d)≤ 0)

ci, j[`]−d if(ci, j[`]−d)> 0.

We also need to update P with the correct discrete price step. To do this we determine the

maximum “−−” entry in ci, j, U = max{x|ci, j[x] = −−}. We then update ci, j[x] = 0 and

set pi, j = x/(k+1).

Example 3.1.2 Take our running example. In order to see the effect of MB, imagine The

Lobby were to donate $100 to voter v1 on issue r2. This would raise the probability of v1

voting yes on r2 to 0.6. The updated P matrix P′ and updated CP matrix C′P are:
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P′ =

r1 r2 r3

v1 0.8 0.6 0.5

v2 0.4 0.7 0.4

C′P =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140

c1,2 −− −− −− −− −− −− 0 40 210 420 500

c1,3 −− −− −− −− −− 0 15 25 70 90 150

c2,1 −− −− −− −− 0 30 40 70 120 200 270

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450

Issue Bribery (IB)

The second method at the disposal of The Lobby is issue bribery. We can see from the

P matrix that each column represents how all voters think about a particular issue. In

this method of bribery, The Lobby can pick a column of the matrix and edit it according

to some budget. The money will be equally distributed among all the voters and the voter

probabilities will move accordingly. So, for d dollars donated, each voter receives a fraction

of d/m and his or her probability of voting “yes” changes accordingly. This can be thought

of as special-interest group donations. Special-interest groups such as PETA3 focus on

issues and dispense their funds across an issue rather than by voter. The bribery could be

funneled through such groups.

This method of influence is demonstrated in the US political system through the use of

Super PACs in light of the US Supreme Court ruling, Citizen United v. Federal Election

Commission. This controversial decision allows for almost unlimited campaign contribu-
3People for the Ethical Treatment of Animals, a narrow-focus group that protests animal testing of food

and drugs, and the swatting of flies.
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tions from interested parties to Super PACs; which are political action committees designed

to generally support a narrow set of issues through the use of direct lobbying efforts and

media campaigns.

We require the elements of CP to be discrete, so we must place some restrictions on this

method of bribery in order to avoid fractional dollars. Specifically, we assume that bribery

will be donated in multiples of m, the number of candidates. In this way only integer

numbers of dollars will be donated per voter. Example 3.1.3 illustrates the process.

Example 3.1.3 Take our running example. In order to see the effect of IB, imagine The

Lobby were to donate $140 to issue r1. Since there are two voters this means that $70 is

donated to each of v1 and v2 on issue r1. The updated P matrix P′ and updated CP matrix

C′P are:

P′ =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.7 0.7 0.4

C′P =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 30 140

c1,2 −− −− −− 0 10 70 100 140 310 520 600

c1,3 −− −− −− −− −− 0 15 25 70 90 150

c2,1 −− −− −− −− −− −− −− 0 50 130 200

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450

Voter Bribery (VB)

The third method at the disposal of The Lobby is voter bribery. In the P matrix, each row

represents how an individual voter will cast his ballot for all issues on the docket. In this
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method of bribery, The Lobby picks a voter and then pays to edit the entire row at once

with the funds being equally distributed over all the issues. So, for d dollars a fraction of

d/n is spent on each issue, which moves accordingly. The cost of moving the voter is given

by the CP matrix as before. This method of bribery is analogous to “buying” or pushing a

single politician or voter. The Lobby seeks to donate so much money to some individual

voters that they have no choice but to move all of their votes toward The Lobby’s agenda.

This method of general lobbying occurs in the US political system [48], though not

always in the form of monetary exchange. As discussed by Hall and Wayman [69], often-

times an interested party will provide education or information about a broad set of issues

to a voter. This information, in many cases, is biased in support of the interested parties

position on the legislation. This method of intervention can change a voter’s opinion across

a large set of issues.

Again, we require the elements of CP to be discrete so we must place some restrictions

on this method of bribery in order to avoid fractional dollars. Specifically, we assume that

bribery will be donated in multiples of n, the number of issues. In this way only integer

numbers of dollars will be donated per voter. Example 3.1.4 illustrates the process.

Example 3.1.4 Take our running example. In order to see the effect of VB, imagine The

Lobby were to donate $270 to voter v2. Since there are three issues this means that $90 is

donated to each of the three issues for v2. The updated P matrix P′ and updated CP matrix

C′P are:

P′ =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.7 1.0 0.6
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C′P =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140

c1,2 −− −− −− 0 10 70 100 140 310 520 600

c1,3 −− −− −− −− −− 0 15 25 70 90 150

c2,1 −− −− −− −− −− −− −− −− 30 110 160

c2,2 −− −− −− −− −− −− −− −− −− −− 0

c2,3 −− −− −− −− −− −− 0 10 90 210 360

Observe that microbribery is equivalent to issue bribery if there is only one voter. Sim-

ilarly, microbribery is equivalent to voter bribery if there is only one referendum.

3.1.3 Evaluation Criteria

Defining criteria for how an issue is won is the next important step in formalizing our

models. Here we define three methods that one could use to evaluate the eventual outcome

of a vote. Since we are focusing on problems that are probabilistic in nature, it is important

to note that no evaluation criterion will guarantee a win. The criteria below yield different

outcomes depending on the model and problem instance.

Strict Majority (SM)

For each issue, a strict majority of the individual voters have probability greater than some

threshold, t, of voting according to the agenda.

In Example 3.1.1, with t = 0.5 we would have the following result:

P =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.4 0.7 0.4

SM 0 0 0
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None of the issues has a strict majority of voters with above a 0.5 probability of voting

“yes” in this setting and thus, The Lobby has not achieved its agenda. However, if we look

at the result for Example 3.1.4, with t = 0.5 after the illustrated round of VB we have:

P′ =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.7 1.0 0.6

SM 1 0 0

While The Lobby has still not achieved its agenda, it has moved closer to its desired result

with the selected bribery action since there is now one issue, r1, which has a strict majority

of voters with Pi,1 > 0.5 probability of voting in accordance with The Lobby.

Average Majority (AM)

For each issue r j of a given probability matrix P, we define the average probability p j =

(∑
m
i=1 pi, j)/m of voting “yes” for r j. We can now evaluate the vote to say that r j is accepted

if and only if p j > t where t is some threshold.

In Example 3.1.1, with t = 0.5 we would have the following result:

P =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.4 0.7 0.4

p j 0.6 0.5 0.45

AM 1 0 0

This table is augmented with the resultant probability (p j) and the AM result for t = 0.5.

The Lobby has achieved exactly one of its desired results in this example. However, if we

investigate the voting result from Example 3.1.4 with t = 0.5 we have the following result

after a round of VB:
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P′ =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.7 1.0 0.6

p j 0.75 0.65 0.55

AM 1 1 1

In this example the round of VB has been successful, The Lobby has fully achieved its

agenda through bribery.

Probabilistic Majority (PM)

The third criterion takes into account the probabilities of possible scenarios, or possible

futures. Each possible scenario, in which voters commit to “yes” or “no” votes for each

issue, has a probability. Under this criterion, the probability that The Lobby’s agenda

passes is the sum of probabilities of those scenarios in which the agenda passes. We call

these majority scenarios and denote their issue-wise probability with ~S ∈Q[0,1].

More formally, for each issue r j of a given probability matrix P, we want to find the

sum of the probabilities of those futures in which a strict majority of voters vote “yes”

for r j. We say that there is a probabilistic majority for r j if the probability of receiving a

majority of “yes” votes exceeds a threshold t. A similar possible futures evaluation metric

is used by [71].

In our running example there are only two voters and, therefore, only one scenario, for

each issue, in which a strict majority is reached. This is the situation where both voters cast

“yes” ballots for both issues. We can compute these values by multiplying the probabilities

of “yes” votes by each other (0.8 ·0.4 for r1 etc.). In Example 3.1.1, with t = 0.2 we would

have the following result:

47



P =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.4 0.7 0.4

Si 0.32 0.21 0.20

PM 1 1 0

This table is augmented with the resultant probability of a majority scenario (Si) and the

PM result for t > 0.2. The Lobby has achieved its desired effect on r1 and r2. However,

if we investigate the voting result from Example 3.1.4 with t = 0.5 we have the following

result after a round of VB:

P′ =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.7 1.0 0.6

Si 0.56 0.30 0.30

PM 1 1 1

In this example the round of VB has been successful, The Lobby has fully achieved its

agenda through bribery.

The examples shown here contain only two voters and, therefore, only one majority

scenario for each issue. When there are more than two voters the computation of the

probability of a majority scenario is not so straightforward.

Observe that all three evaluation criteria coincide if there is only one voter or if the

discretization level equals zero, so the problem is deterministic.

3.1.4 Basic Probabilistic Lobbying Problem

We can now introduce the nine basic problems that we will study. For X ∈ {MB, IB,VB}

and Y ∈ {SM,AM,PM}, we define the following problem.
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Name: X-Y PROBABILISTIC LOBBYING PROBLEM.

Given: A probability matrix P ∈ Qm×n
[0,1] with a cost matrix CP (with integer entries), a

budget B, and some threshold t ∈Q[0,1].

Question: Is there a way for The Lobby to influence P using bribery method X and evalu-

ation criterion Y, without exceeding budget B, such that the result of the votes on all

issues equals 1n?

We abbreviate this problem name as X-Y-PLP. Observe that the discretization level

is an implicit, unary parameter of the problem. It is indirectly specified through the given

cost matrix CP for a problem instance.

Example 3.1.5 Recall our running Example 3.1.1. We have the following matrices for P

and CP:

P =

r1 r2 r3

v1 0.8 0.3 0.5

v2 0.4 0.7 0.4

CP =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140

c1,2 −− −− −− 0 10 70 100 140 310 520 600

c1,3 −− −− −− −− −− 0 15 25 70 90 150

c2,1 −− −− −− −− 0 30 40 70 120 200 270

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450

If we have microbribery with the average majority criterion and t = 0.5 with the ma-

trices considered above, then The Lobby needs to select some voters to bribe in order to

achieve its agenda. If the budget is set for $50, then we have an instance of MB-AM-PLP

with (P,CP,50,0.5) with P and CP as shown above and target vector ~Z = 1n. The Lobby
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needs to bribe v1 on r2 with a payment of $10 and v1 on r3 with a payment of $25. The

updated matrices are:

C′P =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140

c1,2 −− −− −− −− 0 70 100 140 310 520 600

c1,3 −− −− −− −− −− −− −− 0 45 65 125

c2,1 −− −− −− −− 0 30 40 70 120 200 270

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450

P′ =

r1 r2 r3

v1 0.8 0.4 0.7

v2 0.4 0.7 0.4

p j 0.6 0.55 0.55

AM 1 1 1

Each referendum passes according to the AM evaluation criteria and therefore

(P,CP,50,0.5) is in MB-AM-PLP.

3.1.5 Issue Weighting

We augment the model to include the concept of issue weighting. It is reasonable that

certain issues will be of more importance than others. For this reason we will allow The

Lobby to assign higher weights to the issues that they deem more important. The lobby no

longer states an agenda, rather they have weights over the issues and a target total weight.

These positive integer weights will be defined for each issue.

We will specify these weights as a vector ~W ∈ Nn
+ of length n, the total number of

issues in our problem instance. The higher the weight, the more important that particular
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issue is to The Lobby. Along with the weights for the issues we are also given an objective

value V ∈ N+, which is the minimum weight The Lobby wants to see passed. We allow

this set to be a partial order (a reflexive, transitive, and antisymmetric ordering) over the

weights. Therefore, it is possible for The Lobby to have an ordering such as w1 = w2 =

· · · = wn. If this is the case, and V = n, we are left with an instance of X-Y-PLP, where

X ∈ {MB, IB,VB} and Y ∈ {SM,AM,PM}.

We now introduce the nine probabilistic lobbying problems with issue weighting. For

X ∈ {MB, IB,VB} and Y ∈ {SM,AM,PM}, we define the following problem.

Name: X-Y PROBABILISTIC LOBBYING PROBLEM WITH ISSUE WEIGHTING.

Given: A probability matrix P∈Qm×n
[0,1] with cost matrix CP an issue weight vector ~W ∈Nn

+,

an objective value V ∈ N+, and a budget B.

Question: Is there a way for The Lobby to influence P using bribery method X and evalu-

ation criterion Y, without exceeding budget B such that the total weight of all issues

that pass is at least V ?

We abbreviate this problem name as X-Y-PLP-WIW.

Example 3.1.6 Consider our running example, now augmented with ~W = 〈5,10,10〉. We

now provide an augmented P matrix which includes our vector of weights.

P =

r1 r2 r3

wi 5 10 10

v1 0.8 0.3 0.5

v2 0.4 0.7 0.4
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CP =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 100 140

c1,2 −− −− −− 0 10 70 100 140 310 520 600

c1,3 −− −− −− −− −− 0 15 25 70 90 150

c2,1 −− −− −− −− 0 30 40 70 120 200 270

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450

If we have microbribery with the average majority criterion and t = 0.5 with the ma-

trices considered above, then The Lobby needs to select some voters to bribe in order to

achieve its objective value V = 25. If the budget is set for $75, then we have an instance

of VB-AM-PLP-WIW with (P,CP,75,0.5,25) with P and CP as shown above. The Lobby

needs to bribe v1 with a payment of $75. This payment will be split evenly over all the

issues for v1. The updated matrices are:

C′P =

ci, j 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

c1,1 −− −− −− −− −− −− −− −− 0 75 115

c1,2 −− −− −− −− 0 45 75 115 285 495 575

c1,3 −− −− −− −− −− −− −− 0 45 65 125

c2,1 −− −− −− −− 0 30 40 70 120 200 270

c2,2 −− −− −− −− −− −− −− 0 10 40 90

c2,3 −− −− −− −− 0 70 90 100 180 300 450
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Table 3.1: Complexity results for the X-Y PROBABILISTIC LOBBYING PROBLEM, where
X ∈ {MB, IB,VB} and Y ∈ {SM,AM,PM}

Problem Classical Complexity Theorem or Corollary
MB-SM-PLP P Thm. 3.1.8
MB-AM-PLP P Thm. 3.1.9
MB-PM-PLP ∈ NP Thm. 3.1.10 and 3.1.11
IB-SM-PLP P Thm. 3.1.12
IB-AM-PLP P Thm. 3.1.12
IB-PM-PLP ∈ NP Thm. 3.1.10
VB-SM-PLP NP-complete Thm. 3.1.13
VB-AM-PLP NP-complete Thm. 3.1.13
VB-PM-PLP NP-complete Thm. 3.1.14

P′ =

r1 r2 r3

wi 5 10 10

v1 0.8 0.4 0.7

v2 0.4 0.7 0.4

p j 0.6 0.55 0.55

AM 1 1 1

In this case all the referenda have passed and so The Lobby has achieved its objective

value V = 25. Therefore, (P,CP,50,0.5,25) is in VB-AM-PLP-WIW.

3.1.6 Results

In this section we report some results from G. Erdélyi et al. [45]. There are additional

results from this paper which we do not discuss here as these results were produced by

coauthors and, while interesting, do not belong in this dissertation. We refer the reader to

the long version of G. Erdélyi et al. [46] for a complete treatment of these problems in-

cluding their parameterized complexity and approximability results. All the results related

to the PM evaluation method are unique to this dissertation and have not been previously

published.
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Table 3.1 summarizes the classical complexity results for the X-Y PROBABILISTIC

LOBBYING PROBLEM, where X ∈ {MB, IB,VB} and Y ∈ {SM,AM,PM}. Most of the

results show containment and hardness for certain complexity classes. However, in some

cases we have not been able to show hardness for certain problems. In these cases we note

the containment (∈) of the problem.

Complexity of Evaluation Methods

To begin our results we need to understand the complexity of evaluating a vote under our

defined evaluation criteria. If it is computationally hard to evaluate the outcome of a vote,

then it will necessarily be computationally hard to find sufficient bribery schemes for that

voting system. Two of our evaluation criteria are easily computable from observation. SM

requires only the investigation of each entry in the P matrix while AM requires computing

a simple average. However, the evaluation procedure for PM is not so straightforward.

Theorem 3.1.7 provides a polynomial time algorithm for computing the result of an election

evaluated with the PM procedure.

Theorem 3.1.7 Evaluating a winning scenario probability for PM is in P.

Proof. We define a dynamic programming algorithm4 which runs in time O(m2) for a

single issue, where m is the number of voters. We compute the probability Ei,x that exactly

i of the first x voters have voted “yes” on an issue. We build a table consisting of i rows

and x columns called E and start indexing at E1,1. We will create one table for each issue,

r j. We assume that Pi is the probability that voter vi will vote “yes.”

E1,1 := P1

for x := 1 to m−1 do

E1,x+1 = E1,x · (1−Px+1)+Px+1 ·Πx
j=1(1−Pj)

end for
4We note that a similar proof appears in [71].
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for i := 2 to m−1 do

for k := 1 to m−1 do

Ei,x+1 = Ei−1,x ·Px+1 +Ei,x · (1−Px+1)

end for

end for

To determine whether the final probability that r j passes exceeds t, we need to sum all

elements of E such that i > m/2 and x = m. We compute the winning probability for each

issue r j with 1 ≤ j ≤ n; the probability that the entire agenda passes is the product of the

probabilities that each issue passes. The running time of the algorithm is O(m2 ·n). q

Basic Probabilistic Lobbying Problem

We proceed by investigating each bribery method in turn. In some cases, multiple bribery

methods can leverage the same proof of complexity. The first case we investigate is the

MB method.

Theorem 3.1.8 MB-SM-PLP is in P.

Proof. The aim is to win all referenda. For each voter vi and referendum r j, 1 ≤ i ≤ m

and 1≤ j ≤ n, we can compute in polynomial time the amount b(vi,r j) The Lobby has to

spend to turn the favor of vi in the direction of The Lobby (beyond the given threshold t).

In particular, set b(vi,r j) = 0 if voter vi would already vote according to the agenda of The

Lobby. For each issue r j, sort {b(vi,r j) | 1≤ i≤m} non-decreasingly, yielding a sequence

b1(r j), . . . , bm(r j) such that bk(r j) ≤ b`(r j) for k < `. To win referendum r j, The Lobby

must spend at least B(r j) = ∑
d(m+1)/2e
i=1 bi(r j) dollars. Hence, all referenda can be won if and

only if ∑
n
j=1 B(r j) is ≤ B, the given bribery budget. q

Note that the time needed to execute the algorithm given in the previous proof can be

bounded by a polynomial of low order. More precisely, if the input consists of m voters,
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n referenda, and discretization level k, then O(n ·m · k) time is sufficient to compute each

b(vi,r j). Having these values, O(n ·m · log(m)) time is sufficient for the sorting phase.

The sums can be computed in time O(n ·m). (Note that the time analysis can still be

improved; however, a rough estimate of the computation time needed is enough to establish

Theorem 3.1.8.)

Theorem 3.1.9 MB-AM-PLP is in P.

Proof. Let (P,CP,B, t) be a given MB-AM-PLP instance, where P ∈Qm×n
[0,1] , CP is a cost

matrix, B is The Lobby’s budget, and t is a given threshold. Let k be the discretization level

of P, i.e., the interval is divided into k+1 steps of size 1/(k+1) each. For j ∈ {1,2, . . . ,n},

let d j be the minimum cost for The Lobby to bring referendum r j into line with the jth

entry of its target vector 1n. If ∑
n
j=1 d j ≤ B, then The Lobby can achieve its goal that the

votes on all issues pass.

We show that, for a fixed j, we can, in polynomial time, compute d j. Therefore, the

decision problem of whether The Lobby can afford to bring all referenda into line with its

target vector is also in P. We compute d j by dynamic programming. The aim is to have

∑
m
i=1 pi, j/m≥ t, i.e., ∑

m
i=1 pi, j ≥ mt. Recall that pi, j · (k+1) always gives an integer. Define

c j = (k + 1)(mt −∑
m
i=1 pi, j). This is the overall number of confidence steps The Lobby

has to buy to win referendum r j. Note that c j is polynomial in the size of the input, as is

mtk. We define T [l,s] to be the minimum cost of raising (k+1)(∑m
i=1 pi, j) by value s≤ c j

using only microbribes to the first l voters. Notice, T [l,0] = 0. Let qi, j be the integer

with ci, j[qi, j] = 0. Hence, for κ with 0 ≤ κ < qi, j, we find ci, j[κ] = −−, and for κ with

qi, j < κ ≤ k+ 1, we have ci, j[κ] > 0. This means that qi, j/(k+1) = pi, j. As the maximum

number of confidence steps we can gain by bribing voter i is k+1−qi, j, we obtain

T [1,s] =

 ∞ if s > k+1−q1, j,

c1, j[q1, j + s] otherwise.
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Based on this initialization, we can compute:

T [l,s] = min
{

T [l−1,s−q]+ cl, j[ql, j +q] | 0≤ q≤min{s,k+1−ql, j}
}
.

In particular, q = 0 covers the case when no money is spent on voter l, as cl, j[ql, j] = 0.

Thus, each of the polynomially many entries, T [l,s], can be computed in polynomial time.

In particular, T [m,c j] = d j can be computed in polynomial time. q

We have not been able to prove exact lower bounds for some bribery methods in con-

junction with the PM method. However, we can establish upper bounds on MB and IB

under the PM criteria.

Theorem 3.1.10 MB-PM-PLP and IB-PM-PLP are in NP.

Proof. Using a standard guess and check algorithm we can show that MB-PM-PLP and

IB-PM-PLP are in NP. Given a set of bribery actions, we can verify if the resulting P ma-

trix is sufficient to pass The Lobby’s agenda using the algorithm shown in Theorem 3.1.7.

q

Though we do not know the exact lower bound, we can show an algorithm that is

pseudo-polynomial with respect to the size of the budget.

Theorem 3.1.11 There is a bribery algorithm for MB-PM-PLP that runs in polynomial

time with respect to B, n, and m.

Proof. Since the evaluation method PM evaluates each referendum separately we will

show a dynamic programming algorithm for a single issue. We can then apply this algo-

rithm for all m issues.

Our goal is to raise above t the probability that a given referendum r will pass as cheaply

as possible when only a subset of the voters is voting. Given bribes to the subset we can

define a dynamic programming algorithm that incorporates each voter x ∈ {v1, . . . ,vn} in
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turn until we find the maximum probability of r passing using the least amount of our

budget.

Consider an instance of MB-PM-PLP. We compute Fx = Πx
j=1 p j, the probability that

the single referendum will pass assuming that the voters vx+1, . . . ,vn deterministically vote

for the referendum. Without loss of generality, we assume that B is bounded by the sum of

all possible bribes.

Our goal is to find the minimum cost to make Fn > t. We do this by finding the maxi-

mum value we can raise each Fx to, given each value b≤ B. This search is achieved using

dynamic programming to build a (n+1)×B table D. Filling in each entry in the table takes

polynomial time, so the problem is in P if the budget, B, is polynomial in the size of the

input (e.g., B is input in unary or bribes are paid in dollar bills). Otherwise, the algorithm

is pseudo-polynomial.

The table entry D[n,b] is the maximum we can make Fn via bribes to voters v1, . . . ,vn,

within budget b. Initialize D[0,b] = 1 for all b.

Intuitively, we bring each voter x∈ {v1, . . . ,vn} online one at a time. When we incorpo-

rate a new voter vx+1 we may or may not require a bribe to this new voter. The maximum

probability (of r passing) obtainable either involves a bribe to vx+1, and whatever bribes

are needed with the remaining money, or does not require a bribe to vx+1. This gives us the

dynamic programming update.

A bribe to voter vx+1 (to vote for r) changes px+1 to some new value p′x+1. We can

compute Fx+1 for the given bribe by Fx+1 = Fx · p′x+1.

Let h = max{D[x,b−d] · p′x+1} where d is the cost of increasing px+1 to p′x+1. We set

D[x+1,b] =max{D[x,b] · px+1,h}. Since there are at most k+1 bribes to consider for each

vx, computing {D[x+1,b] : 0≤ b≤ B} takes O(k ·n ·B) operations. This is polynomial in

k, n, and B. The algorithm runs in polynomial time with respect to |B| and n.

We can apply this algorithm independently to all m issues. We can do this because we

must pass all issues and this dynamic programming algorithm finds the minimum cost for
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each referendum. Since spending any less than the minimum on a per issue basis will not

achieve The Lobby’s agenda we can consider each issue independently. Therefore, for any

number of issues, the algorithm runs in O(k ·n ·B ·m) operations. q

If we define PM slightly differently, so that a win happens if the probability of the

scenario in which all referenda pass is > t (instead of currently defined as each individual

referenda is > t) we can still use the algorithm in Theorem 3.1.11. We create an equivalent

instance with only one issue and add n×m unique voters. We label the voters as vir j with

1≤ i≤ n and 1≤ j≤m and combine them all into one overarching issue. The Lobby must

pass this overarching issue in order for a win.

Theorem 3.1.12 IB-SM-PLP and IB-AM-PLP are in P.

Proof. We prove that IB-SM-PLP is in P; the proof for IB-AM-PLP is analogous.

In IB-SM-PLP we are required to influence issues, not individual voters. For each

issue r j, we determine if it will pass by counting the number of voters whose probability is

above the threshold t. If this number of voters is > bn/2c then this issue will pass and we

do not need to determine any bribery actions.

Otherwise, we must determine the minimum cost to bring r j to passing (bribing enough

voters). For issue r j that is not currently passing, we count the minimum number s of

voters that need to be bribed. We split the voters into two groups: Y are the voters whose

probability of voting “yes” is > t and X is the set of voters whose probability of voting

“yes” is ≤ t. We then number the set X from cheapest to most expensive according to how

much it would cost to bring the probability that xi votes “yes” above t.

We then select voter xs and investigate their bribery price to elevate our referendum to

a “yes.” Since the bribe will be evenly split across all voters we need to spend n times the

cost of bribery for voter xs in order to have a majority on the issue. We repeat this process

for every issue.
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After we have computed this value for all issues we compute the total amount needed,

and compare to B. If the amount to spend is≤ B then we accept, otherwise we reject. q

In order to determine the complexity of variants of the VB method, we need to formally

introduce the Optimal Lobbying Problem (OL) from Christian et al. [24]. We state this

problem in the standard format for parameterized complexity:

Name: OPTIMAL LOBBYING (OL)

Given: An m×n matrix E and a 0/1 vector~Z of length n. Where each row of E represents a

voter, each column represents an issue, and~Z represents The Lobby’s target outcome.

Parameter: A positive integer b (representing the number of voters to be influenced).

Question: Is there a choice of b rows of the matrix (i.e., of b voters) that can be changed

such that in each column of the resulting matrix (i.e., for each issue) a majority vote

yields the outcome targeted by The Lobby?

Christian et al. [24] proved that this problem is W[2]-complete by a reduction from

k-DOMINATING SET to OL (showing the lower bound) and from OL to INDEPENDENT-

k-DOMINATING SET (showing the upper bound). In particular, this implies NP-hardness

of OL. The following result focuses on the classical complexity of VB-SM-PLP and

VB-AM-PLP.

To employ Christian et al.’s W[2]-hardness result [24], we show that OL is a special

case of VB-SM-PLP and thus (parameterized) polynomial-time reduces to VB-SM-PLP.

This reduction is parameter preserving for k and shows that VB-SM-PLP is W[2]-hard.

Since the original reduction for OL was from INDEPENDENT-k-DOMINATING SET to show

an upper bound, OL is also NP-hard. It is this NP-hardness that we make use of in these

proofs. Analogous arguments apply to VB-AM-PLP.

Theorem 3.1.13 VB-SM-PLP and VB-AM-PLP are NP-complete.
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Proof. Membership in NP is easy to see for both VB-SM-PLP and VB-AM-PLP.

We prove that VB-SM-PLP is NP-hard by reducing OL to VB-SM-PLP. We are

given an instance (E,~Z,b) of OL, where E is a m×n 0/1 matrix, b is the number of votes

to be edited, and~Z is the agenda for The Lobby. Without loss of generality, we may assume

that ~Z = 1n (see Section 3.1.1).

We construct an instance of VB-SM-PLP consisting of the given matrix P = E (a

“degenerate” probability matrix with only the probabilities 0 and 1), a corresponding cost

matrix CP, a target vector ~Z = 1n, and a budget B. CP has two columns (i.e., we have k = 0,

since the problem instance is deterministic, see Section 3.1.1), one column for probability

0 and one for probability 1. All entries of CP are set to unit cost.

The cost of increasing any value in P is n, since bribes are distributed evenly across

issues for a given voter. We want to know whether there is a set of bribes of cost at most

b · n = B such that The Lobby’s agenda passes. This holds if and only if there are b vot-

ers that can be bribed so that they vote uniformly according to The Lobby’s agenda and

that is sufficient to pass all the issues. Thus, the given instance (E,~Z,b) is in OL if and

only if the constructed instance (P,CP,~Z,B) is in VB-SM-PLP, which shows that OL is

a polynomial-time recognizable special case of VB-SM-PLP, and thus VB-SM-PLP is

NP-hard.

Note that for the construction above it does not matter whether we use the strict-

majority criterion (SM) or the average-majority criterion (AM). Since the entries of P

are 0 or 1, we have p j > 0.5 if and only if we have a strict majority of ones in the jth

column. Thus, VB-AM-PLP is NP-hard too. q

We can also extend this proof for VB with the PM evaluation criteria.

Corollary 3.1.14 VB-PM-PLP is NP-complete.

Proof. The proof of Theorem 3.1.13 shows a reduction of OL to VB-AM-PLP-WIW

and VB-SM-PLP-WIW. This reduction is independent of the evaluation criterion since
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Table 3.2: Complexity results for X-Y PROBABILISTIC LOBBYING PROBLEM WITH IS-
SUE WEIGHTING, where X ∈ {MB, IB,VB} and Y ∈ {SM,AM,PM}

Problem Classical Complexity Theorem or Corollary
MB-SM-PLP-WIW NP-complete Thm. 3.1.15
MB-AM-PLP-WIW NP-complete Thm. 3.1.15
MB-PM-PLP-WIW NP-complete Thm. 3.1.15
IB-SM-PLP-WIW NP-complete Thm. 3.1.15
IB-AM-PLP-WIW NP-complete Thm. 3.1.15
IB-PM-PLP-WIW NP-complete Thm. 3.1.15
VB-SM-PLP-WIW NP-complete Thm. 3.1.16
VB-AM-PLP-WIW NP-complete Thm. 3.1.16
VB-PM-PLP-WIW NP-complete Thm. 3.1.16

we create deterministic instances of OL and therefore we can extend it to an instance of

VB-PM-PLP.

This shows that VB-PM-PLP is NP-complete. q

Probabilistic Lobbying with Issue Weighting

Table 3.2 summarizes our results for X-Y-PLP-WIW, where X ∈ {MB, IB,VB} and Y ∈

{SM,AM,PM}. The most interesting observation is that introducing issue weights raises

the complexity from P to NP-completeness for all cases of microbribery and issue bribery

(though it remains the same for voter bribery). Additional results shown by G. Erdélyi [46]

indicate that these NP-complete problems are fixed-parameter tractable and, in some cases,

admit a FPTAS.

To begin we first need to introduce the well known NP-complete problem KNAPSACK

[65].

Name: KNAPSACK

Given: given a set of objects U = {o1, . . . ,on}with weights w : U→N and profits p : U→

N, and W,P ∈ N.

Question: Is there a subset I ⊆ {1, . . . ,n} such that ∑i∈I w(oi)≤W and ∑i∈I p(oi)≥ P.
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Theorem 3.1.15 The problems MB-SM-PLP-WIW, MB-AM-PLP-WIW,

MB-PM-PLP-WIW, IB-SM-PLP-WIW, IB-AM-PLP-WIW, and IB-PM-PLP-WIW

are NP-complete.

Proof. Membership in NP can be seen for each problem X-Y-PLP-WIW, X∈{MB, IB}

and Y ∈ {SM,AM,PM} through a guess and check algorithm.

To prove that MB-SM-PLP-WIW is NP-hard, we give a reduction from KNAPSACK.

Given a KNAPSACK instance (U,w, p,W,P), create a MB-SM-PLP-WIW instance with

k = 0 and only one voter, v1, where for each issue, v1’s acceptance probability is either zero

or one. For each object o j ∈U , create an issue r j such that the acceptance probability of v1

is zero. Let the cost of raising this probability on r j be c1, j(1) = w(o j) and let the weight

of issue r j be w j = p(o j). Let The Lobby’s budget be W and its objective value be V = P.

By construction, there is a subset I ⊆ {1, . . . ,n} with ∑i∈I w(oi)≤W and ∑i∈I p(oi)≥ P if

and only if there is a subset I ⊆ {1, . . . ,n} with ∑i∈I c1,i ≤W and ∑i∈I wi ≥V .

As the reduction introduces only one voter, there is no difference between the bribery

methods MB and IB, and no difference either between the evaluation criteria SM, AM,

and PM. Hence, the above reduction works for all six problems. q

Turning to voter bribery with issue weighting an immediate consequence of Theo-

rem 3.1.13 is that VB-SM-PLP-WIW, VB-AM-PLP-WIW, and VB-PM-PLP-WIW

are NP-hard, since they are generalizations of VB-SM-PLP, VB-AM-PLP, and

VB-PM-PLP-WIW. Again, membership in NP can also be seen for the issue weighted

problems

Corollary 3.1.16 VB-SM-PLP-WIW, VB-AM-PLP-WIW, and VB-PM-PLP-WIW

are NP-complete.
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3.1.7 Observations

We have studied four lobbying scenarios in a probabilistic setting, both with and without

issue weights. Among these, we identified problems that can be solved in polynomial time

and problems that are NP-complete. For the case of weighted issues we find that all prob-

lem variants are, in fact, strongly NP-hard; their hardness does not depend on whether the

numbers in their inputs are encoded in unary or in binary. In some cases not discussed in

this presentation of the results, we find problems that are fixed-parameter tractable prob-

lems, and problems that are hard (namely, W[2]-complete or W[2]-hard) in terms of their

parameterized complexity with suitable parameters. The additional results also investigate

the approximability of hard probabilistic lobbying problems (without issue weights) and

obtain both approximation and inapproximability results. A complete treatment of these

results can be found in the paper by G. Erdélyi et al. [46].

As a general statement, this section shows the addition of uncertainty into the reasoning

process increases the computational complexity. While this is not true in all cases, a direct

comparison is difficult to classify. Unweighted, deterministic bribery is computationally

tractable, while almost all weighted variants are computationally hard [52]. We obtain

mixed results in this section. This can be attributed, in large part, to the particular modeling

choices. We have provided a mix of models in an attempt to identify where, exactly, the

problem becomes hard. We continue this quest for a clear dividing line in the next section.

3.2 Sports Tournaments and Ranking Problems

Sports competitions are common forms of entertainment and recreation around the world.

In most sports contests both observers and players have some notion of which competi-

tors are favored over others. Many individuals, including some players, wager vast sums

of money on the outcomes of particular games and tournaments. A quick Google search

reveals dozens of players, coaches, referees, and judges convicted of manipulating the

outcome of sports competitions through match fixing, point shaving, and outright cheat-
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ing. Additionally many websites (such as www.kenpom.com) produce and publish in depth

statistics for not only overall team win/loss predications, but also predictions for individual

player stats on a per game basis. It is a world of probabilities and manipulation.

We use sports tournaments as a motivating example of other domains in which bribery

[52] and coalitional manipulation [33] can undermine the integrity of competition. Tour-

naments and single winner elections, when the set of candidates and the set of voters are

equivalent, are used in many domains including self-organization of ad-hoc wireless sensor

networks, where leaders are elected to delegate work or act as central routing nodes [121],

and multi-criteria decision making, where page rankings are sometimes determined by

links from the set of pages under consideration [16]. In addition to these important ap-

plications of tournaments, there has been recent empirical research in political science and

sociology revealing that, in the United States, voter preferences in political elections can be

significantly affected by apparently irrelevant events, specifically sports tournaments [73].

In this section we study three different types of sports tournaments.

Cup Tournament: A single-elimination competition (or knockout tournament [128]) over

a complete binary tree where each entrant5 plays a sequence of matches head-to-

head; the winner is the entrant that is left undefeated. The United States’ men’s

and women’s NCAA Basketball Tournaments and most tennis majors fall into this

category.

Round Robin tournament: A competition where each entrant competes against every

other entrant and earns a points for each victory; the winner is the entrant with the

most points. The group play round of the FIFA World Cup falls into this category.

Challenge or Caterpillar Tournament: A series of matches where the winner of each

match plays the next entrant in increasing order of rank; the winner is the entrant
5We use the term entrant in this section because we can imagine a tournament made up of individuals or

teams.
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Figure 3.1: Example of (1) A challenge tournament and (2) a cup tournament. The winner
is the entrant who reaches the top node.

e0 e1

e2

e0 e1 e2 e3

(1) (2)

e3

who wins the final match. Boxing titles and some PBA bowling competitions use

this type of tournament.

Figure 3.2 illustrates the difference between cup and challenge tournaments. These

types of sporting events correspond to the voting rules: cup for cup tournaments, Copeland

for round robin tournaments, and linear balloting for challenge tournaments. We refer the

reader to Section 2.2.1 or to Arrow et al. [3] for a more complete treatment of voting rules.

In tournaments and sporting events there are several natural questions which arise, such as:

“What are the odds my preferred entrant wins?” and “Does my preferred entrant have a

chance of winning?”

The classical notation of manipulation, introduced by Bartholdi et al. [7], has been

extensively studied in the deterministic case. Conitzer et al. [33] studied some manipulation

problems in stochastic settings, however, many of their NP-completeness results break

down in the setting under study here because the reductions require the ability to add voters

that are not in the candidate set. There are also results relating to manipulation under

deterministic information for cup [33] and Copeland [55]. Likewise, the bribery problem
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for elections, introduced by Faliszewski et al. [52], has been well studied for voting rules

under deterministic information. Again, many of these results do not transfer; the hardness

reductions require the ability to introduce an unrestricted number of non-candidate voters.

There has been significant work on the schedule control problem for cup or knock-

out tournaments: in the deterministic case by Lang et al. [81] (for the similar problem of

sequential majority voting), Vu et al. [128], and Williams [132]; in the stochastic case by

Hazon et al. [72]. In addition to the work on the control problem, there is work from Russell

and Walsh about the complexity of coalitional manipulation in sports tournaments [113].

In Russell and Walsh’s model, entrants may be a part of a coalition of manipulators that can

choose to lose their matches. There is also an extensive body of work on the elimination

problem for sports tournaments. In the elimination problem, the probability that team i

beats team j is known, and the problem is to find the probability that a team is eliminated

given a sports season or playoff schedule [68, 76].

There has been surprisingly little work on stochastic models of tournaments; perhaps

the closest notion is that of a possible winner — a notion intrinsic to reasoning under

uncertainty introduced by Konczak and Lang [78], with further study by Lang et al. [81],

and others. Recent studies of the complexity of computing possible winners include those

by Lang et al. [81], Faliszewski et al. [4], and Xia et al. [139]. These papers address

complexity questions when voters are defined by their (possibly incomplete) preference

profiles over a set of outcomes, but not probabilities of winning.

In Section 3.2.1 we formally describe our model of reasoning about bribery in tour-

naments where entrants have probabilities of winning and losing. Section 3.2.2 formally

states the six decision problems we study in this domain for all three tournament types. Sec-

tion 3.2.3 details our complexity results and ends with a few observations about the change

in reasoning complexity when models move from deterministic tournaments to models of

uncertain information.
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3.2.1 Model Definition

We begin by defining a model with which to reason about sports tournaments and other

head-to-head competitions. The details of the model closely follow the model proposed in

Section 3.1.1 for plurality elections [45].

Consider a tournament with n entrants {e1, . . . ,en}. Note that what distinguishes a tour-

nament from a voting rule here is that, for a given election with separate sets of candidates

and voters, we require the set of candidates to be exactly the set of voters. Let Qn×n
[0,1] be

the set of n× n matrices over [0,1]∩Q. Let pi, j denote the probability that entrant i will

defeat entrant j. Let P = [pi, j] ∈Qn×n
[0,1]. We require that pi, j + p j,i = 1. We choose k ∈ N+

to discretize the interval [0,1] (we call this the discretization level of the problem). That is,

we let each pi, j be in {0,1/(k+1),2/(k+1), . . . , k/(k+1),1}; i, j ∈ {1, . . . ,n}. Taking k = 0 gives

us the deterministic case where each game is either won or lost with certainty.

We define CP as the discrete price table. CP has n2 rows (indexed by pairs i, j) and k+2

columns. For each entry in the table we have a positive integer (Z+) value representing the

cost to lower pi, j to a given probability. We assume that all entrants will compete to the

best of their abilities and we cannot increase an entrant’s probability of winning a particular

match. Therefore we designate these entries as−−. We also require that ci, j(pi, j)= 0. That

is, it does not cost anything to have an entrant compete at its highest level. The entries for

ci, j must also be monotone decreasing; payment of ci, j(l) changes the probability that i

beats j to l/(k+1). Bribery must be performed in one fell swoop, before the first game is

played. Outside actors may not have access to the entrants after the start of the competition

(i.e., the tournament is taking place in a remote or tightly controlled location) so all bribery

must be done beforehand.

We are also given a threshold t and an integer-valued budget B. For cup and challenge

tournaments we are also given a tree T with entrants labeled on the leaves to represent the

order of the matches. Let Pr[ei|P,T ] denote the probability that ei wins the tournament

defined by schedule T and probability matrix P.
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Example 3.2.1 Consider the following example with k = 4 (so there are k+1 = 5 possible

probability configurations) and n = 4 entrants. We use this example setup as a running

example for the rest of the chapter. These parameters for k and n are given implicitly by

the probability matrix P and cost matrix CP.

P =

e1 e2 e3 e4

e1 −− 0.75 0.50 0.25

e2 0.25 −− 0.25 0.25

e3 0.50 0.75 −− 0.25

e4 0.75 0.75 0.75 −−

CP =

ci, j 0.00 0.25 0.50 0.75 1.00

c1,2 100 40 20 0 −−

c1,3 30 25 0 −− −−

c1,4 200 0 −− −− −−

c2,1 10 0 −− −− −−

c2,3 10 0 −− −− −−

c2,4 10 0 −− −− −−

c3,1 120 75 0 −− −−

c3,2 200 100 50 0 −−

c3,4 300 0 −− −− −−

c4,1 300 200 100 0 −−

c4,2 300 200 100 0 −−

c4,3 400 300 200 0 −−

In this section we focus on the following three types of tournaments. In each case we

assume that no game ends in a tie and we have a unique winner for every tournament. In

the deterministic case a scoring model which includes ties or does not normalize to certain

forms for round robin tournaments and Copeland elections can have significant effects on

the complexity of evaluation, manipulation, and bribery [55, 76].

Challenge Tournament: In a challenge tournament the entrants are ordered e1,e2, . . . ,en.

In the first match, e1 plays e2. In the second match, the winner plays e3, and so on.

The winner of the last match wins the tournament.
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Cup: In a cup tournament we are given a complete binary tree T with entrants labeled

on the leaves. Each internal node is decided by the competition between the two

entrants on the level below. The winner is the entrant who reaches the top node of

the tree.

Round Robin: In a round robin tournament (Copeland Scoring) each entrant plays every

other entrant exactly once. In each match each entrant receives 1 point for a win and

0 points for a loss. The winner of the tournament is the entrant with the maximum

number of points. If more than one entrant has the same maximum score, we employ

a lexicographic tie-breaking scheme where e∗ always comes first.

3.2.2 The Probabilistic Tournament Bribery Problem

With this model we can now define our problem and a set of related decision problems for

Y ∈ {Challenge Tournament (CT), Cup, Round-Robin (RR)}.

Name: Y - PROBABILISTIC TOURNAMENT BRIBERY PROBLEM (Y-PTBP)

Given: A probability matrix P ∈ Qn×n
[0,1] describing the entrants ei in the tournament with

some preferred entrant e∗ and (where necessary) cost matrix CP, threshold t, budget

B, set of manipulators M ⊆ E, and ordering T .

Questions: We define the following 6 decision problems on the above information:

Evaluation: Is the probability that e∗ wins Y (the sum of the probabilities of the

futures with e∗ a winner) above t ?

Pos-Win: Is e∗’s probability of winning the tournament above 0?

Pos-Win-$: Can we raise e∗’s probability of winning Y above 0 by bribing specific

entrants according to CP and not exceeding the budget B?
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Constructive Coalitional Manipulation (CCM): Can we raise e∗’s probability of

winning Y above t by strategically setting all the probabilities associated with a

subset M (a coalition) of the entrants.

Constructive Bribery: Can we raise e∗’s probability of winning Y above t by brib-

ing specific entrants according to CP and not exceeding the budget B?

Exact: Can we raise e∗’s probability of winning the tournament above t by bribing

specific entrants according to CP and spending exactly B?

Example 3.2.2 Recall our running example matrices, shown below.

P =

e1 e2 e3 e4

e1 −− 0.75 0.50 0.25

e2 0.25 −− 0.25 0.25

e3 0.50 0.75 −− 0.25

e4 0.75 0.75 0.75 −−

CP =

ci, j 0.00 0.25 0.50 0.75 1.00

c1,2 100 40 20 0 −−

c1,3 30 25 0 −− −−

c1,4 200 0 −− −− −−

c2,1 10 0 −− −− −−

c2,3 10 0 −− −− −−

c2,4 10 0 −− −− −−

c3,1 120 75 0 −− −−

c3,2 200 100 50 0 −−

c3,4 300 0 −− −− −−

c4,1 300 200 100 0 −−

c4,2 300 200 100 0 −−

c4,3 400 300 200 0 −−

Consider a challenge tournament with the entrants ordered on T as illustrated in Fig-

ure 3.2.2
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Figure 3.2: Tournament graph (T ) for Example 3.2.2.

e1e1

e2e2 e3e3 e4e4

For this graph we can evaluate the six questions presented in above. We assume that

e∗ = e1 and we enumerate the other necessary parameters for the questions that require

them.

Evaluation: For the decision problem we require a threshold, here we take t = 0.08. For

a caterpillar tournament with e∗ in the first position, computing the exact probability

of winning is Pr[e1|P,T ] = p1,2× p1,3× p1,4 = 0.75× 0.5× 0.25 = 0.09375. Since

this is > t this example is a “yes” instance.

Pos-Win: For the decision problem for pos-win we only need to examine the result of the

evaluation procedure. Since Pr[e1|P,T ]> 0 then this example is a “yes” instance.

Pos-Win-$: For our running example Pr[e1|P,T ] > 0 without requiring any bribes and

therefore is also a “yes” instance for pos-win-$.

Constructive Coalitional Manipulation (CCM): For this question let M = {e4} and t =

0.15. Since we are trying to raise Pr[e1|P,T ] > 0.15 the best thing to do is to set

p1,4 = 0. This way the manipulator, e4, loses to the preferred entrant with certainty.

We can then evaluate Pr[e1|P,T ] = p1,2× p1,3× p1,4 = 0.75× 0.5× 1.0 = 0.375.

Since Pr[e1|P,T ]> 0.15 this is a “yes” instance.
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Table 3.3: Complexity results for the PROBABILISTIC TOURNAMENT BRIBERY PROB-
LEM. In some cases we have been unable to provide lower bounds, in these cases we note
our upper bound results (∈).

Challenge Cup Round Robin
Evaluation P (Thm. 3.2.3) P (Thm. 3.2.10) ∈ #P (Thm. 3.2.15)
Pos-Win P (Thm. 3.2.4) P (Thm. 3.2.11) P (Cor. 3.2.18)

Pos-Win-$ P (Thm. 3.2.5) P (Thm. 3.2.12) P (Thm. 3.2.17)
CCM P (Thm. 3.2.6) ∈ NP (Thm. 3.2.13) ∈ NPPP (Thm. 3.2.16)

Cons. Bribery ∈ NP (Thm. 3.2.8) ∈ NP (Thm. 3.2.13) ∈ NPPP (Thm. 3.2.16)
Exact NP-C (Thm. 3.2.9) NP-C (Thm. 3.2.14) ∈ NPPP (Thm. 3.2.16)

Constructive Bribery: For this question let t = 0.15 and B= 100. By investigation we see

there are only two meaningful options for bribes. We can bribe e4 so that p1,4 = 0.5

or we can bribe e2 and e3 so that p1,2 = 1.0 and p1,3 = 0.75. Using the evaluation

formula again we see that with the first option of bribes we have Pr[e1|P,T ] = p1,2×

p1,3× p1,4 = 0.75× 0.5× 0.50 = 0.1875 with the second option of bribes we have

Pr[e1|P,T ] = p1,2× p1,3× p1,4 = 1.0×0.75×0.25 = 0.1875. Both of these options

give us the same value for Pr[e1|P,T ] and, since both options are > 0.15, this is a

“yes” instance.

Exact: For this question let t = 0.15 and B = 100. By investigation we see there are

only two meaningful options for bribes and only one option that exactly spends our

budget. Therefore, we bribe e4 so that p1,4 = 0.5. Using the evaluation formula

again we see that Pr[e1|P,T ] = p1,2× p1,3× p1,4 = 0.75×0.5×0.50= 0.1875. Since

Pr[e1|P,T ]> 0.15 and we have spent exactly our budget this is a “yes” instance.

3.2.3 Results

We proceed through the results in order of tournament type. This allows us to present the

results in a coherent fashion as, in many cases, the proofs and algorithms build on one

another.
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Challenge Tournament

We begin by investigating the evaluation problem for challenge tournaments. It is important

to establish that we have a polynomial time winner determination scheme, otherwise, the

bribery results would, by definition, be computationally hard.

Theorem 3.2.3 Evaluation for CT-PTBP is in P.

Proof. We provide a polynomial time dynamic programming algorithm to compute

the winning probability of any entrant in an instance of CT-PTBP. Let the entrants be

{e1, . . . ,en}. Suppose e∗ = ek and 1≤ k ≤ n. Let z(i, j) denote the probability that ei wins

match j.

Let z(0,0) = 1.

for i = 1 to k do

u = max(1, i−1) {The first match ei plays.}

z(i,u) = ∑
i−1
t=1 z(t,u−1)pi,t

for j = max(1, i−1) to n−1 do

z(i, j) = z(i, j−1)pi, j

end for

end for

At the termination of the algorithm, the probability that ei wins is equal to z(i,n− 1).

q

Now that we have determined that it is computationally easy to evaluate the result of a

given instance of CT-PTBP, we move our attention to the possible winner problem.

Theorem 3.2.4 Pos-Win for CT-PTBP is in P.

Proof. Run the evaluation algorithm given in Theorem 3.2.3 with t = 0. Note that e∗ is

a possible winner if and only if Pr[e∗|P,T ]> 0. q
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Theorem 3.2.5 Pos-Win-$ for CT-PTBP is in P.

Proof. We provide a polynomial time dynamic programming algorithm to compute the

minimum cost such that e∗ has a non-zero probability of winning the tournament.

In order for entrant e∗ to have a non-zero probability of winning it must be able to beat

at least one possible entrant in each of e∗’s matches in the tournament graph T . We compute

the minimum cost to ensure that each entrant has a non-zero probability of reaching level

L in the graph.

Given P and CP we can compute the minimum cost matrix, min$, an integer matrix

of size n2, as follows: min$i j = 0 if i starts with a non-zero probability to beat j and the

minimum bribe cost min$i j = ci j(1/(k+1)) otherwise. Let L be a level in the tournament

graph T starting with 0 at the bottom level. We then create a vector for each entrant, Vei ,

of size n with all entries initialized to 0 (the cost to get to the 0th level). Let Vei(L) be the

minimum cost for ei to be a winner at level L. Without loss of generality we assume that

the entrants are numbered such that e1 and e2 compete in the first match with the winner

competing against e3 in the second match.

for L = 1 to n−1 do

Let G = e1, ...,eL+1.

for e ∈ G do

if e = eL+1 then

Ve(L) = minx∈G,x 6=e(min$ j,x +Vx(L−1))

end if

if e = e j, j ≤ L then

Ve(L) = min$ j,L+1 +Ve(L−1)

end if

end for

end for
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At the end of execution Vei will contain the minimum cost to promote entrant i to the

top level of T with a non-zero winning probability. We can compare this cost with B and

either accept if Ve∗(n−1)≤ B else reject. q

Recall that in the coalitional manipulation problem we are given a set M ⊆ E of mem-

bers of the manipulating coalition. Observe that the coalitional manipulation problem is a

special case of the bribery problem in our model. Specifically, in a coalitional manipulation

instance, B = |M| and the cost of bribing members of M is also 1 (unit priced). The entrants

E \M have bribery costs equal to ∞ (so they cannot be changed in this scenario).

Theorem 3.2.6 Constructive Coalitional Manipulation for CT-PTBP is in P.

Proof. Since there are no budget-related resource bounds in this problem we can assume

our problem is to maximize e∗’s probability of winning by setting the entries for each m∈M

in the probability matrix P. We refer to the setting of M as a strategy. In this instance, CP

gives the available options of probability values for each m ∈M even though there are only

unit prices.

There are |M| · (n−|M|) potential contests between coalition and non-coalition mem-

bers with 2 possible strategies for each, and there are |M| · |M|−1
2 contests between coalition

members, with 3 possible strategies for each (a loses, b loses, both try to win), for a total

of 2|M|·(n−|M|)3|M|·
|M|−1

2 strategies.

Any manipulators who enter the tournament after e∗ need to deterministically lose to

e∗ in order for e∗ to win the championship. Therefore, for the rest of the proof, we focus

on strategies for manipulators who enter the tournament before e∗. We construct a strategy

in a step by step fashion starting with the first game that en−1 participates in. We proceed

in reverse match order, one game at a time, setting the strategies for each m ∈ M against

each entrant as we go.

Step 0: For each m ∈ M, if m reaches e∗ then m chooses to lose. This sets the strategy

against e∗.
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Repeat for: j = 1 to n−2

Step i: For each m ∈ M that enters before en− j, suppose m reaches en− j. Set m’s

strategy against en− j to maximize the probability that e∗ wins by evaluating the

2 or 3 possibilities. This is possible because strategies for all contests above

en− j have been set. Also, if en− j ∈M, then for each ei 6∈M, i < n− j, assuming

ei reaches en− j, pick en− j’s strategy against ei to maximize e∗’s probability of

winning.

After Step j = n− 2 all strategies have been set for all M. Whatever the strategy is at

lower levels, Pr(e∗ wins ) is maximized by maximizing

qi j = Pr(e∗ wins |ei reaches en− j). (3.1)

Since the events “ei reaches en− j” for different i are disjoint, the qi j can be maximized

independently.

We do 2 or 3 evaluations for each pair of contestants. For each we require a call to the

O(n2) evaluation procedure described in Theorem 3.2.3. Therefore we compute an optimal

manipulation strategy in O(n4). q

Theorem 3.2.3 gives us membership in NP for the constructive bribery problem since

we can verify a bribery plan in polynomial time. Theorem 3.2.6 shows that in a situation

of CCM we can achieve optimal manipulations in polynomial time. However, our results

for CCM do not extend in a straightforward manner to the situation of priced bribery.

The simple answer would be to apply a bang-for-the-buck greedy algorithm to iter-

atively choose the cheapest available single bribe which results in the largest change in

Pr[e∗|P,T ]/COST OF BRIBE. However, this will not reach an optimal solution in all cases. This

can be illustrated by an example of CT-PTBP. Consider the following example over four

entrants.
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Example 3.2.7 Assume that e∗ = e1 and the tournament graph, T , is the same as shown

in Figure 3.2.2 (where e1 plays every match). Assume we have k = 4 and P and CP given

below with B = 20. For simplification, we omit the bribery cost for all matches that do not

contain e∗.

P =
e1 e2 e3 e4

e1 −− 0.25 0.25 0.25
CP =

ci, j 0.00 0.25 0.50 0.75 1.00

c2,1 13 13 13 0 −−

c3,1 25 10 10 0 −−

c4,1 25 10 10 0 −−

We know that when e∗ is involved in every match, the winning probability is given by:

Pr[e1|P,T ] = p1,2× p1,3× p1,4 = 0.25×0.25×0.25 = 0.015625. We set the cheapest bribe

of entrant e2 to change p1,2 = 1.0 with cost 15. This would give Pr[e1|P,T ] = p1,2× p1,3×

p1,4 = 1.0× 0.25× 0.25 = 0.0625, giving a change in probability of 0.046875 for a cost

of 13 or a bang-for-the-buck ratio of 0.0036058. Looking at either a bribe of e3 or e4 we

would change p1,3 = 0.75 with a cost of 10. This would give Pr[e1|P,T ] = p1,2× p1,3×

p1,4 = 0.25×0.75×0.25 = 0.046875, giving a change in probability of 0.03125 for a cost

of 10 or a bang-for-the-buck ratio of 0.003125. This would mean that according to the

bang-for-the-buck heuristic, bribing e2 is best single action.

However, looking at our budget we see that we can afford to bribe both p1,3 = p1,4 =

0.75 for a combined cost of 20. This would give Pr[e1|P,T ] = p1,2× p1,3× p1,4 = 0.25×

0.75× 0.75 = 0.140625. This is, by far, the best action and shows that a simple single

action greedy algorithm would make non-optimal decisions in this case.

In order to eliminate as many complications of the tournament graph as possible, we

turn our attention to the simplest case of a challenge tournament. This is a version where e∗

is potentially involved in every game. In this version, CHALLENGE-THE-CHAMP-PTBP,

e∗ takes on all challengers and is a common sub-problem for both the general CT-PTBP

and CUP-PTBP problems.
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Theorem 3.2.8 There is a Constructive Bribery algorithm for

CHALLENGE-THE-CHAMP-PTBP that runs in polynomial time with respect to B and n.

Proof. The Challenge-the-Champ problem assumes that e∗ = e1 and is in the first match.

Our goal is to maximize the probability that e∗ will win the tournament within budget

through bribes to each of the other players in the tournament. The idea of this proof is

to consider bribes on only a subset of the entrants. At each step we add an entrant x ∈

{e2, . . . ,en} and show a dynamic programming update that will compute the cheapest bribe

for the new subset of entrants until we have considered the set of all the entrants.

In an instance of Challenge-the-Champ we compute the probability that e∗ will win the

first x games with Fx = Πx
j=1 p1, j. Intuitively Fx tells us the probability that e∗ wins the

tournament considering only x of the n games. Without loss of generality, we assume that

B is bounded by the sum of all possible bribes.

Our goal is to maximize Fx (within budget). We do this using dynamic programming

to build a (n+1)×B table D. Filling in each entry in the table takes polynomial time, so

the problem is in P if the budget, B, is polynomial in the size of the input (e.g., B is input

in unary). Otherwise, the algorithm is pseudo-polynomial.

The table entry D[n,b] is the maximum we can make Fn via bribes to entrants e1, . . . ,en,

within budget b. Initialize D[0,b] = 1 for all b.

Intuitively, we add games to the set one at time by considering each new entrant x ∈

{e2, . . . ,xn}. When we incorporate the new ex+1 we may or may not require a bribe to this

new entrant. The maximum probability (of e∗ winning) obtainable either involves a bribe

to ex+1, and whatever bribes are needed with the remaining money, or does not require a

bribe to ex+1. This gives us the dynamic programming update.

A bribe to entrant ex+1 (to lose to e∗) changes p1,x+1 to some new value p′1,x+1. We can

compute Fx+1 for the given bribe by Fx+1 = Fi · p′1,x+1.

Let h = max{D[x,b−d] · p′1,x+1} where d is the cost of increasing p1,x+1 to p′1,x+1. We

set D[x+ 1,b] = max{D[i,b] · p1,x+1,h}. Since there are at most k+ 1 bribes for each ei,
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computing {D[i+1,b] : 0 ≤ b ≤ B} takes O(k ·n ·B) operations. This is polynomial in k,

n, and B. The algorithm runs in polynomial time with respect to B and n. q

While we have been unable to show NP-hardness for any version of the constructive

bribery problem, Theorem 3.2.8, with the insights listed in this section, leads to the conjec-

ture that the problem is hard. Many well known NP-hard problem like KNAPSACK admit

pseudo-polynomial time dynamic programming algorithms [65].

If we require our outside manipulator to spend exactly the allocated budget then we

can show NP-completeness for challenge tournaments. Situations which require an orga-

nization to spend a budget exactly occur implicitly in many large organizations and gov-

ernments. For resources other than money that could be used, such as referees in sports

tournaments or canvassers in political elections, there sometimes the requirement of exact

allocations.

We must introduce the SUBSET SUM PROBLEM for our next proof. The statement of

the problem is from Garey and Johnson’s book [65].

Name: SUBSET SUM

Given: A set W ∈ Z+, w1, . . . ,wm, and a target S ∈ Z+.

Question: Does there exist a subset I ⊆ {1, . . . ,m} such that ∑i∈I wi = S?

This problem was shown to be NP-complete via a transformation from PARTITION by

Karp [75]. Using this problem we can exactly classify the complexity of the exact bribery

problem for CT-PTBP.

Theorem 3.2.9 Exact Bribery for CT-PTBP is NP-complete.

Proof. Membership is an immediate consequence of Theorem 3.2.3 and a guess and

check algorithm.
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To show NP-hardness we provide a reduction from SUBSET SUM: For a given SUBSET

SUM instance we set up a challenge tournament with S players such that e∗ always wins

(i.e., e∗ has a 100% chance of winning all games against all players) and we let t = 0, B= S,

and k = 0. We then create the bribery cost matrix CP with prices equal to the weights of

w1, . . . ,wm. In this situation bribery will have no effect and we must distribute the money

exactly. We have now established a polynomial time mapping such that there will be an

exact bribery if and only if there is a subset such that ∑i∈I wi = S. q

Cup Rule

We observe that many of the results for CUP-PTBP use reasoning similar to that used for

CT-PTBP. We assume that each CUP-PTBP instance is a complete tree. Note that this

does not limit our results; we can always pad the tree with entrants who lose to all other

entrants and cannot be bribed.

Theorem 3.2.10 Evaluation for CUP-PTBP is in P.

Proof. This is a proof by construction of a polynomial time algorithm that computes

Pr[e∗|P,T ] for all entrants. We construct a table of size n · dlog2(n)e and use dynamic

programming to compute for each i : Lr,i where Lr,i is the probability that entrant i advances

to round r (with r = 1 being the first match ei competes in). When we get to the last round,

our table will contain the probability that each entrant won.

Let G(r, i) be the entrants that ei may face in round r.

for i = 1 to n do

L1,i = 1

end for

for r = 2 to dlog2(n)e do

for i = 1 to n do

Lr+1,i = Lr,i ·∑x∈G(r,i) pi,x ·Lr,x
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end for

end for

At each stage, r, the numerators and denominators of the probabilities are O(kr) ⊂

O(kn), having sizes n log(k) (where k is the discretization level). Each ei potentially com-

petes against each x in exactly one round, so there are exactly n(n− 1) ∈ O(n2) multipli-

cations in total so the total time is O(n2(n log(k))2) = O(n4 log(k)2). q

Turning again to the possible winner problem variants we see that evaluating whether a

entrant has a chance of winning is easy for cup tournaments as well.

Theorem 3.2.11 Pos-Win for CUP-PTBP is in P.

Proof. Run the evaluation algorithm given in Theorem 3.2.10 with t = 0. q

Theorem 3.2.12 Pos-Win-$ for CUP-PTBP is in P.

Proof. We provide a polynomial time dynamic programming algorithm to compute the

minimum cost such that e∗ has a non-zero probability of winning the tournament.

Let the tournament graph T be a complete binary tree. Let L be the level of the binary

tree starting with 0 at the bottom level. We then create a vector for each entrant, Vei , of size

n with all entries initialized to 0 (the cost to get to the 0th level). Let Vei(L) be the minimum

cost for ei to have a non-zero probability of winning at level L. We construct the minimum

cost matrix, min$, an integer matrix of size n2, as follows: min$i j = 0 if i starts with a

non-zero probability to beat j and the minimum bribe cost min$i j = ci j(1/(k+1)) otherwise.

for L = 1 to log(n) do

for all ei ∈ T do

Let G(ei,L) be the set of entrants in the sub-tree at level L containing ei.

Vei(L) =Vei(L−1)+minx∈G(ei,L)−G(ei,L−1)(min$i,x +Vx(L−1))

end for
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end for

At the end of execution Vei(log2(n)) will contain the minimum cost to promote ei to the

top level of T with a non-zero winning probability. We can compare this cost with B and

either accept if Ve∗(log2 n)≤ B or reject. q

Theorem 3.2.10 immediately provides us with the following corollaries through stan-

dard guess and check algorithms.

Corollary 3.2.13 Constructive Coalitional Manipulation and Constructive Bribery are in

NP for CUP-PTBP.

We have not been able to show lower bounds results for CCM or constructive bribery

for CUP-PTBP. The result does not hold for cup tournaments because the winner within

separate sub-trees can affect the winning probability of all entrants in a neighboring sub-

tree. We can, however, straightforwardly transfer our results for the exact case.

Theorem 3.2.14 Exact Bribery for CUP-PTBP is NP-complete.

Proof. To show membership in NP we can easily check whether we have spent exactly

our budget. We can nondeterministically guess a bribery scheme that utilizes the entire

budget and check it using the algorithm developed in the proof of Theorem 3.2.10. Thus

we have a polynomial time algorithm which requires a nondeterministic guess to come up

with an exact bribery scheme.

To show NP-hardness we can use a similar reduction as the one used in Theorem 3.2.9.

Recall that S is the target sum in a SUBSET SUM instance. In this construction we choose

a number, j, such that j2 ≥ |S|. We build our cup instance with j players. We set the

added players’ bribery prices to be > B so that these players can be safely ignored. We

then use the same mapping presented in the proof of Theorem 3.2.9 to show Exact Bribery

is NP-complete. q
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Round Robin

Round Robin tournaments are of particular interest in the social choice community because

of their close correspondence to the Copeland election system. Faliszewski et al. [55]

provided a comprehensive study of bribery and manipulation of Copeland elections under

deterministic scenarios.

In addition, many papers on sports elimination, including those by Gusfield and Martel

[68] and Kerns and Paulusma [76], study sports round robin tournaments for particular

competitions (FIFA, Major League Baseball etc.). Our model is more general: we do not

restrict our model to deterministic settings or specific tournament formats.

We strongly believe the evaluation problem for round robin tournaments to be #P-

hard though we have been unable to prove this statement. Hazon et al. showed that the

problem is #P-hard for the voting system Copeland with an imperfect information model

[71]. However, their results do not transfer in a straightforward manner, as their reduction

requires the ability to add voters who are not candidates. Likewise Gusfield and Martel

showed a similar problem of determining the probability that a team is eliminated from a

round robin sports competition is #P-hard [68]. Their result does not hold in our context

as their proof requires the ability to restrict the round robin schedule to a subset of the total

number of games played.

Theorem 3.2.15 Evaluation for RR-PTBP is in #P.

Proof. Suppose we’re given an evaluation problem with probabilities expressed with

precision d. Each probability pi, j can be written as ni, j/d, where ni, j is an integer.

We create a nondeterministic polynomial time algorithm, M, as follows:

• For each match [i, j]

– M guesses n ∈ [0,d)
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– If n < pi, j then i wins and increments a counter for i, otherwise it increments a

counter for j.

• If e∗’s counter has the highest value, accept; otherwise, reject.

• M accepts this tournament if and only if e∗ wins on ≥ 1/2 of the computations. Note

that the value of 1/2 can be replaced by t with no loss of generality.

The number of accepting computations divided by the number of computations is the

probability that e∗ wins the tournament. q

The upper bound on evaluation complexity given in Theorem 3.2.15 can be extended

immediately to the bribery, CCM, and exact bribery problems as well.

Theorem 3.2.16 CCM, Constructive Bribery, and Exact Bribery for RR-PTBP are in

NPPP.

Proof. Given a tournament T and threshold t, the NPPP machine nondeterministically

guesses a set of bribes and evaluate with a single call to a #P oracle (equivalently, a PP

oracle). We accept if the probability of e∗ winning is > t. Note that we have actually shown

this is in NP #P[1]. q

Both variants of the possible winner problem for round robin tournaments have poly-

nomial time algorithms. While at first glance this may seem odd, it is because answering

the question of possible winner does not require enumerating all possible outcomes of the

tournament. Instead, to answer the possible winner problem we only need to find one

configuration of the matches in which e∗ wins.

The case of possible winner with access to bribes is somewhat more complicated for

round robin tournaments. We begin with this problem because, as we show, the possible

winner problem without access to bribes can leverage the same algorithmic construction as

the possible winner with access to bribes problem. Recall the MINIMUM COST FEASIBLE

FLOW problem introduced in Section 2.1.2 [1].

85



Name: MINIMUM COST FEASIBLE FLOW

Given: A graph G(V,E) with vertices V , edges E, source node s, and sink node t. Each

e ∈ E has flow, capacity, and cost. An edge labeled “[x,y],c” has capacity y and

requires flow of at least x with cost per unit c. Cost is accumulated on a per unit flow

basis (i.e., if x = 2 and c = 3 then the total cost of the edge is 6).

Question: Does there exist a flow from s to t such that the flow into each node is the same

as the flow out, all minimum edge flows are satisfied, no maximum edge flows are

violated, and cost is minimal?

There is a polynomial time algorithm for this problem and its solution (when the constraints

are integers) is integral [1].

Using minimum cost feasible flows, Russell and Walsh provided an algorithm to com-

pute minimal constructive manipulations (but not bribery) for deterministic round robin

tournaments when the number of games that e∗ can win is fixed [113]. The algorithm

presented by Russell and Walsh did not allow for bribery (we do not bound the number

of manipulable games) and assumed that the number of games that e∗ could win is fixed.

Likewise, Faliszewski et al. showed manipulation results for Copeland under determinis-

tic information elections using feasible flows [55] and a similar construction was used by

Faliszewski for the nonuniform bribery case (bribery where each voter may have different

prices for changing their votes) [51]. While our construction is similar to theirs (and to

an earlier constructions from Gusfield and Martel [68] and Ford and Fulkerson [64]) there

are significant differences between the constructions. Our results are for a more flexible

model, which is able to encapsulate bribery and manipulation, and works for even or odd

numbers of entrants in the tournament.

Theorem 3.2.17 Pos-Win-$ for RR-PTBP is in P.
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Proof. We give a polynomial time reduction of an instance of Pos-Win-$ to a minimal

cost feasible flow problem. Our reduction constructs a set of minimum cost feasible flow

instances; the minimum cost bribery corresponds to the cost of the flow in one of the

polynomially many graphs we construct. There is a polynomial time algorithm for finding

the solution to a minimum cost feasible flow problem [1]. We build this sequence of graphs

so that, in each graph, if there is a way to bribe the entrants such that e∗ can be made a

possible winner, the cost of the bribery scheme will be equal to the cost of the minimal cost

flow in that graph. We build a graph for each possible winning score e∗ could have. There

will be at most n/2 graphs built in this proof and therefore we can answer Pos-Win-$ for

RR-PTBP in time polynomial in the size of the input.

We first construct the minimum cost matrix, min$i, j, as in the proof of Theorem 3.2.5.

We also construct a domination graph D, which is a complete directed graph that has all

entrants as nodes and each directed edge goes from a winning entrant to a losing entrant.

We construct D by placing a directed edge from all entrants that are more likely to win

to those less likely to win. While constructing D, we set the deterministic outcome of all

games with 0 bribery cost involving e∗ such that e∗ is a winner (maximizing its possible

wins). Once we set all the nondetermined games in favor of e∗ we let t = outDeg(e∗).

In this instance t represents the total number of games that e∗ can possibly win without

making any bribes. In order for e∗ to be a possible winner, we need to bribe between 0

and n− t− 1 entrants to lose to e∗ (as well as possibly influencing the outcomes of other

games).

For each i from 0 to n− t we construct a feasible flow graph that tells us whether e∗ can

be made a possible winner by bribing exactly i games involving e∗. We iterate over these

graphs until we find a situation where e∗ is a possible winner. Intuitively, the graph selects

the cheapest bribes in order to make e∗ a winner. Each unit of flow in the graph is thought

of as a point for a winning entrant. The costs of edges correspond to minimum bribe costs

in order to “fix” deterministic games. We arrange the flow network such that, if there is a
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minimum cost feasible flow, then e∗ can be made a winner for cost equal to the cost of the

flow.

We detail the construction of the graph in three groups of edges between two interior

stages. Figure 3.2.3 illustrates an example of a completely constructed graph and we pro-

ceed through a description of the construction illustrating a scenario with five entrants. The

nodes other than the source and sink are classified as either left nodes or right nodes. The

left half is the set of nodes that connect from the source. The right half is a set of nodes

that are connected to the sink. The left and right nodes are connected by the interior edges

of the graph.
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Figure 3.3: Step 1 of the construction of a minimal cost winner determination graph. We

have a source, sink, game nodes for each possible game, and collector nodes for each

participating entrant.
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In order to build the graph we begin with a bipartite graph (not including the source

and sink). The nodes on the left hand side of the graph represent all the games in the

tournament. The nodes on the right hand side of the graph represent all the entrants to

the tournament. Each unit of flow in this graph can be thought of, intuitively, as a “win”

flowing to a particular entrant. We begin by building a source node s, a sink node t, a node

for each game that will be played, and a collection node for each entrant in the tournament.

The game nodes in Figure 3.2.3 are labeled with the numbers of the entrants participating

in a particular game while the collector nodes are labeled with the individual entrants.
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Figure 3.4: Step 2 of the construction of a minimal cost winner determination graph. We

build edges from the source to all game nodes with 1 unit of flow.
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To build the edges we first set one edge from the source to each of the nodes on the

left hand side with capacity and flow of 1 as illustrated in Figure 3.2.3. These units of flow

will eventually count how many games a particular entrant will win. Since each game is

potentially worth one point we have exactly one unit of flow into each game node.
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Figure 3.5: Step 3 of the construction of a minimal cost winner determination graph. We

build edges from all game nodes to their sure-to-win entrants.
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The internal edges (edges from matches to entrants) are constructed depending on the

prices and probabilities of the individual games. If one entrant is sure to beat another

entrant and we cannot afford any bribes with respect to these games, we build an edge

[1,1],c = 0 from the game node to the sure-to-win entrant. Figure 3.2.3 illustrates these

edges in our example graph.
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Figure 3.6: Step 4 of the construction of a minimal cost winner determination graph. We

build two edges in cases where either entrant is a possible winner.
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If both entrants have a nonzero probability of winning we build an edge [0,1],c = 0 to

both entrant nodes. Since we are only attempting to find a configuration that would allow

e∗ to win, this construction allows us to check both possible game outcomes. This step is

illustrated in Figure 3.2.3.
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Figure 3.7: Step 5 of the construction of a minimal cost winner determination graph. We

encode the cost of minimum bribes to change deterministic game outcomes.
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The final case of internal edges is if one entrant is sure to beat another and we can

possibly afford the bribe. In this case we build an edge [0,1],c = 0 from the game node

to the sure-to-win entrant and an edge [0,1],c = min$i, j from the game node to the node

of the entrant who can be made a possible winner if the bribe is made. This construction

allows our flow network to change the outcome of a deterministic game with cost equal to

the amount of the minimum bribe. This step is illustrated in Figure 3.2.3.
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Figure 3.8: A complete example of a minimal cost winner determination flow network.
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We then build the final set of edges from entrant nodes to sink with capacity x, which

we change between iterations of the graph. Recall that t is the total number of wins that e∗

can achieve without resorting to bribery. We set x = t + i and we iterate i from 0 to n− t

and build a graph as described above for each i. Here, x represents the most games that e∗

can win making i bribes to entrants involved in games with e∗. We find the minimum cost

feasible flow for each combination of bribes that e∗ can make to achieve a given score. A

complete graph construction is showing Figure 3.2.3.

We check each graph in turn for i = 0, . . . ,n− t and if we attain a feasible flow with

cost ≤ B we accept, otherwise, reject.

This method is complete and will find the minimum cost bribery to give e∗ a chance to

win. Assume that there is a cheaper flow then the one found by our network. This would

mean that there existed a less expensive way to grant e∗ a number of wins greater than or

equal to any other entrant. Since each entrants win at most n games in any particular graph,

and we check all n possible scores for e∗ this cannot happen. Therefore, this construction

will find the minimal cost bribery construction.

We build, at most, n networks with O(n2) nodes and edges. Since the minimum cost
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Table 3.4: Complexity results for deterministic tournaments. The cup and round robin
results are from Russell and Walsh [113].

Challenge Cup Round-Robin
Evaluation P P P

CCM P P P

feasible flow problem can be solved in polynomial time, the overall running time of our

algorithm is polynomial. Therefore pos-win-$ for RR-PTBP is in P. q

We can straightforwardly extend the proof of Theorem 3.2.17 to the case where we do

not have access to our budget. In the Pos-Win problem we cannot actually bribe anyone,

we just have to choose winners of the non-deterministic games in a way that allows e∗

a way to win. The most direct way to show this is to apply the algorithm presented in

Theorem 3.2.17 with B = 0. We can optimize this construction somewhat but it is sufficient

to state the following corollary.

Corollary 3.2.18 Pos-Win for RR-PTBP is in P.

3.2.4 Observations

Table 3.3 provides an overview of our complexity results on tournaments. Russell and

Walsh [113] provided a thorough complexity analysis of similar problems in deterministic

cases, all of which generate polynomial time solvable problems. Table 3.4 reveals that,

in general, polynomial time evaluation procedures lead to polynomial time manipulation

procedures (for deterministic systems).6

If we can compute a constructive manipulation in the deterministic case then we can

determine a possible winner in the stochastic case. The problem of a possible winner with

uncertain information is the same as constructive bribery in the deterministic setting with

B = ∞. We don’t yet have hardness proofs for some of the problems here. We believe

that the problems are, in fact, complete for the classes we mention. We observe that in
6This is also observed in [33].
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some cases the introduction of uncertainty has no effect on membership in these com-

plexity classes while in others it represents a significant change in reasoning structure and

complexity.

3.3 Summary

In this chapter we have studied the complexity of bribery and manipulation problems in

elections with multiple referenda and sports tournaments, in which the actors seeking to

affect the outcomes have access to only probabilities of how agents will vote or teams

will perform. This chapter represents a significant departure from other work in the field

of computational social choice which, generally, only considers deterministic information

versions of the same problems. Many of the problems studied become computationally

harder under the uncertain information setting. This increase in complexity is not uniform

across problem types and, in many cases, the change in complexity seems to be closely tied

to modeling choices of the particular setting.

In this chapter voters expressed their preferences over the issues and each issue was

treated as an independent item. In the next chapter we investigate the situation where

agents have structured preferences over the decisions to be made. This is an important step

in understanding how the type and amount of information outside actors have access to

affects the security of voting systems.

Copyright c© Nicholas Mattei, 2012.
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