
Voting with CP-nets using a Probabilistic

Preference Structure

Cristina Cornelio, Umberto Grandi, Judy Goldsmith, Nicholas Mattei,
Francesca Rossi and K. Brent Venable

Abstract

Probabilistic conditional preference networks (PCP-nets) provide a compact repre-
sentation of a probability distribution over a collection of CP-nets. In this paper we
view a PCP-net as the result of aggregating a collection of CP-nets into a single
structure. We use the resulting PCP-net to perform collective reasoning tasks, e.g.
determining the most preferred alternative, when a group of agents expresses their
preferences via CP-nets. We propose several PCP-net based methods to perform CP-
net aggregation and evaluate these methods both axiomatically and experimentally.

1 Introduction

The study of preferences plays an important role in the field of artificial intelligence [19]
and machine learning [7]. The ability to express preferences in a faithful way, which can be
handled efficiently, is essential in many reasoning tasks. In settings such as e-commerce, on
demand video, and other settings where supply outstrips an individuals ability to view all
the available choices, we require an efficient formalism to model and reason with complex,
interdependent preferences [8]. We may also use these preferences to make decisions about
joint plans, actions, or items in multi-agent environments [18]. Agents express their prefer-
ences over a set of alternative decisions, these preferences are aggregated into one decision
which satisfies as many agents as possible.

Often multi-attribute preference modeling and reasoning causes a combinatorial explo-
sion, often leading to high computational cost [5, 6, 9]. The set of alternatives is often
described as a product of multiple features, for example, a user’s preferences over a set of
cars, which can be described by their colors, technical specifications, cost, reliability, etc.
A number of compact representation languages have been developed to tackle the com-
putational challenges arising from these problems. Among others, we mention conditional
preference structures (CP-nets) [3], soft constraints [2, 19], and GAI-nets [10]. In this paper
we focus on CP-nets as the tool for modeling the preferences of a single agent. CP-nets are a
qualitative preference modeling framework that allow for conditional preference statements.

Preferences are often uncertain: we may be unsure about our preference ordering over
certain items, or there could be noise in our preference structure due to lack of precision
in elicitation or sensor collection. We may also need to represent preferences that are di-
rectly conflicting, such as disagreement in multi-agent systems or voting settings [14, 15, 20].
PCP-nets model uncertain preferences natively while using the same preferential dependency
structure used with CP-nets [1, 4]. However, in a PCP-net, a preference ordering over a vari-
able’s domain is replaced by a probability distribution over all possible preference orderings
of the variable’s domain. Thus, a PCP-net defines a probability distribution over a collection
of CP-nets: all those CP-nets that can be obtained from the PCP-net by choosing a vari-
able ordering from the distribution over all orderings. Given a PCP-net, one can define the
optimal variable assignment in two natural ways: as the most probable optimal outcome,
or as the optimal outcome of the most probable CP-net induced by the PCP-net. If the



dependency structure of the PCP-net has a bounded size, both kinds of optimal outcomes
can be found in time polynomial time in the size of the PCP-net.

In this paper we investigate the use of PCP-nets as a way to aggregate the preferences
expressed by a collection of CP-nets. When a set of agents each expresses their preferences
as a CP-net, we may want to find the alternative which is most preferred by the agents, or
decide whether one alternative is collectively preferred to another.

Previous efforts to tackle these collective reasoning problems have primarily focused on
the question of optimality. Generally, a voting method is defined in order to determine the
single most preferred alternative. These methods are usually sequential and work at the
feature level of the CP-nets [11, 12, 13, 20, 21]. In contrast, we aggregate the collection
of CP-nets into a single structure, a PCP-net, on which we can directly perform collective
reasoning tasks. By maintaining structure, a PCP-net can then be used for other reasoning
tasks, such as extracting the complete ranking over alternatives, instead of only determining
the winner. The PCP-net also allows us to compute the probability of dominance: given two
outcomes we can compute the probability with which the first is preferred to the second. Our
aggregation methods allow us to store only a single, compact, aggregated structure instead
of a large collection of CP-nets. Additionally, this aggregated structure, the PCP-net, allows
us to preform other collective reasoning tasks that a voting method which only returns a
top element, would not allow us to compute.

We propose two methods for aggregating a collection of CP-nets into a single PCP-net:
by extracting the probability distribution directly from the CP-nets (proportion method) or
by minimizing the error between the aggregated structure and the original set of CP-nets
(least-squares method). We combine these two methods with the two ways of extracting
an optimal outcome from a PCP-net (most probable optimal outcome and the optimal
outcome of the most probable CP-net), obtaining four approaches, each of which can be seen
as a voting rule that take as input a profile of individual CP-nets and outputs a winning
alternative. We show that the output of the sequential voting method with majority for
CP-nets [11] coincides with one of the four methods we define and the four methods we
propose can return a disjoint set of outcomes. We analyze the methods according to several
axiomatic properties usually considered to be desirable in voting rules [16] and through an
experimental comparison of the four methods. For the empirical experiments, we compute
the output of each of the four methods and comparing these outputs via dominance queries
on the original set of CP-nets, determining which alternative most satisfies the individual
agents’ preferences. The experimental results show that the proportional methods strictly
dominate the least-squares methods. Moreover, the optimal outcome of the most probable
induced CP-net is always better than the most probable optimal outcome.

Notice that the outcome computed by the proportional method combined with taking
the optimal outcome of the most probable induced CP-net coincides with the result of the
sequential aggregation procedure, proposed by Lang and Xia [11]. This is not surprising, as
Lang and Xia’s sequential method was designed to obtain the outcome which best satisfies
the preferences of the whole collection of agents. However, we can obtain this outcome by
generating a PCP-net representing the collection of given CP-nets. This allows us to do
more than just find a collectively optimal outcome, since the PCP-net can also be used to
answer dominance queries or to find the next best outcome in a linearization of the induced
preference ordering.

2 Background

In this section we give a brief introduction to CP-nets and PCP-nets. Throughout we assume
that the domain of each variable is binary and the induced-width [4] of the dependency graph



is bounded from above by a constant.

2.1 CP-nets

A CP-net is a graphical model for compactly representing conditional and qualitative prefer-
ence statements [3]. CP-nets exploit conditional preferential independence by decomposing
an agent’s preferences via the ceteris paribus assumption (all other things being equal).

Definition 1 A CP-net is a directed graph where each node represents a variable (often
called features) F = {X1, . . . , Xn} each with finite domains D(X1), . . . ,D(Xn). For each
feature Xi, there is a set of parent features Pa(Xi) that can affect the preferences over
the values of Xi. This defines a dependency graph in which each node Xi has edges from
all features in Pa(Xi). Given this structural information, the user explicitly specifies her
preference over the values of Xi for each complete assignment on Pa(Xi). This preference
is a total order over D(X).

An outcome in a CP-net is a complete assignment to all the variables. The semantics of
CP-nets depends on the notion of a worsening flip, which is a change in the value of a
variable to a value which is less preferred by the cp-statement for that variable. We say that
one outcome α is better than another outcome β (α > β) if and only if there is a chain of
worsening flips from α to β. This definition induces a preorder over the outcomes.

In general, finding an optimal outcome (that is, an outcome that has no other outcome
better than it) and testing for optimality in this ordering is NP-hard. However, in acyclic
CP-nets, there is only one optimal outcome and this can be found in as many steps as
the number of features via a sweep forward procedure [3] which is linear in the number of
features. On the other hand, determining if one outcome is better than another according
to this ordering, called a dominance query, is NP-hard even for acyclic CP-nets [5, 9].

In this paper we consider a collection of CP-net, also called a profile in voting theory
terminology. A profile of CP-nets is a set of CP-nets on the same set of variables: P =
(C1, · · · , Cm). In this paper we are only interested in O-legal profiles of acyclic CP-nets
where each variable has a binary domain.

Definition 2 (O-legality) Given a profile of m CP-nets C1, · · · , Cm over n variables
X1, · · · , Xn, with dependency graphs D1, · · · , Dm. Let us call D the union of such Di’s.
Consider also a linear order on the variables O = X1 ≺ · · · ≺ Xn. The profile is said to be
O-legal if, for each edge (Xi, Xj) in D, we have Xi ≺ Xj in O.

2.2 PCP-nets

A PCP-net (Probabilistic CP-net) is a generalization of a CP-net, where, for each feature
X, instead of giving a preference ordering over the domain of X, we give a probability
distribution over the set of all preference orderings for the domain of X [1, 4]. Given a
feature X in a PCP-net, its PCP-table is a table associating each combination of the values
of the parent features of X with a probability distribution over the set of total orderings
over the domain of X.

Given a PCP-net Q, a CP-net induced by Q has the same variables, each with the same
domain, as Q. The dependency edges of the induced CP-net are a subset of the edges in
the PCP-net. Thus, CP-nets induced by the same PCP-net may have different dependency
graphs. Moreover, the CP-tables are generated accordingly for the chosen edges. For each
independent feature, one ordering over its domain (i.e., a row in its PCP-table) is selected.
Similarly, for dependent features, an ordering is selected for each combination of the values
of parent features. Each induced CP-net has an associated probability, obtained from the



PCP-net by taking the product of the probabilities of the deterministic orderings chosen in
the CP-net.

More precisely, given a PCP-net, we have a probability p for each row u : x > x̄ of each
PCP-table, while the probability of u : x̄ > x corresponds to 1 − p. The probability of an
induced CP-net C is fC , computed as the product of the probability p or 1− p of the rows
chosen for the CP-net.

Example 1 Consider the PCP-net shown with two features, X1 and X2, with domains
DXi

= {xi, x̄i}.
Structure:

X1 X2
p

Feature X1:

X orderings P
x1 > x̄1 r
x̄1 > x1 1− r

Feature X2:

A values B orderings P

x1
x2 > x̄2 q1

x̄2 > x2 1− q1

x̄1
x2 > x̄2 q2

x̄2 > x2 1− q2

A induced CP-net C (with probability fC = [(1− r) · (1− q1) · q2]) is shown below.

Structure:

X1 X2

Feature X1:

A orderings
x̄1 > x1

Feature X2:

A values B orderings
x1 x̄2 > x2

x̄1 x2 > x̄2

Since we have a probability distribution over the set of all induced CP-nets, we can give the
following definitions:

Definition 3 Given a PCP-net, its most probable optimal outcome is the outcome with
the highest probability. We compute the probability of an outcome o being optimal by taking
the sum of the probabilities of the induced CP-nets that have o as the optimal outcome.

Definition 4 Given a PCP-net, its most probable induced CP-net is the induced CP-
net with the highest probability, considering the probability distribution induced by the PCP-
net.

Notice that the optimal outcome of the most probable induced CP-net may be different
from the most probable optimal outcome [4]. To compute these two outcomes, it is possi-
ble to generate two Bayesian Networks and compute their maximal joint probability [17].
Computing the result for either notion of optimal outcome has polynomial computational
complexity if the induced width [4] of the dependency graph of the PCP-net is bounded.

3 Building the PCP-net

We assume an O-legal profile of m CP-nets over variables X1, · · · , Xn each with binary
domain. The profile may contain several occurrences of the same CP-net, so each CP-
net comes with its frequency (that is, the number of its occurrences). We can define the
normalized frequency of a CP-net Ci as P(C) = pi = fi

m where fi is the frequency of the
CP-net Ci and m the number of users. Thus a profile of m CP-nets can also be written as
P = ((C1, f1), · · · , (Ck, fk)), with

∑k
i=1 fi = m.



Given a set of CP-nets defined on the same variables and with a probability distribution
over them, a PCP-net that generates exactly this distribution may not exist. This can be
seen in the following profile of CP-nets over two variables X1 and X2:

• (C1, 0.5): (x1 > x̄1), (x1 : x2 > x̄2) and (x̄1 : x̄2 > x2)

• (C2, 0.4): (x1 > x̄1), (x1 : x̄2 > x2) and (x̄1 : x2 > x̄2)

• (C3, 0.1): (x1 > x̄1) and (x2 > x̄2)

The PCP-net representing such a profile must satisfy the following system of equations,
where p is the probability of x1 > x̄1, q is the probability of x1 : x2 > x̄2, and r is the
probability of x̄1 : x2 > x̄2:

fC1 :pq(1− r) = 0.5

fC2 :p(1− q)r = 0.4

fC3 :pqr = 0.1

⇒


p = 2.4

q = 0.25

r = 0.12

This solution is unique but not feasible, as p, q and r are probabilities so they should all be
at most 1.

In general, given a profile with n features X1, · · · , Xn, we have a number of probability
variables equal to

Np =

n∑
i=1

2|Pa(Xi)|,

while the number of equations is

2
∑n

i=1 2|Pa(Xi)|
= 2Np .

The system is thus over-constrained and will rarely admit a solution. Therefore, this aggre-
gation method is not a feasible one for aggregating even O-legal CP-net profiles. In the next
section we will define other aggregation approaches.

3.1 Aggregation Methods

In this section we define two methods to represent a profile of CP-nets using a PCP-net. As
noted above, we are not guaranteed to find a PCP-net representing the exact distribution
of induced CP-nets in the profile. Thus we must resort to methods approximating this ideal
distribution.

The first method we propose generates a PCP-net by taking the union of the dependency
graphs of the given CP-nets and determining the probabilities in the PCP-tables from the
frequency of the CP-nets in the profile.

Definition 5 Given a profile of CP-nets P = ((C1, f1), · · · , (Ck, fk)), the Proportion (PR)
aggregation method defines a PCP-net whose dependency graph is the union of the graphs of
the individual CP-nets in the profile. Given a variable X and an assignment u to its parents,
the probabilities in the PCP-tables are defined as follows:

P(x > x̄|u) =
∑

Ci:x>x̄|u

P(Ci)

P(x̄ > x|u) = 1−
∑

Ci:x>x̄|u

P(Ci).



That is, the probability of the ordering x > x̄ for variable X, given assignment u of the
parents of X, is the sum of the probabilities of the CP-nets that have that particular ordering
over the domain of X.

The second method minimizes the mean squared error between the probability distribution
induced by the PCP-net over the CP-nets given in input and the normalised frequency
observed in the input.

Definition 6 Let P = ((C1, f1), · · · , (Ck, fk)) be a profile of CP-nets. The Least Square
(LS) aggregating method defines a PCP-net where the graph is the union of the graphs of the
CP-nets and the probabilities qij in the PCP-tables (where qij is the probability of the j-row
of the PCP-table of the variable Xi in the PCP-net) solve the following:

argmin
q∈[0,1]r

∑
C

(fC(q)− P(C))2

where q is the vector of qij ordered lexicographically with i as first variable, C varies over all
CP-nets induced by the union graph, fCi(q) are the formulas introduced in Section 2.2, and
P(C) = pi if C = Ci, P(C) = 0 otherwise.

It is important to observe that computing the PCP-net using method PR may require
exponential time, as the PCP-net resulting from a generic profile may have an exponen-
tial number of cp-statements. However, we can ensure that the union graph of an O-legal
profile has bounded width – making PR a polynomial method – by requiring the follow-
ing O-boundedness condition: for each feature j there are sets PP (Xj) ⊆ {X1, . . . , Xn}
of possible parents such that (i) |PP (Xj)| < k for all j, and (ii) for all individuals i,
Pai(Xj) ⊆ PP (Xj). On the other hand, method LS requires writing an exponential num-
ber of equations, one for each induced CP-net. For this reason, in some of the experiments
in Section 5 we use a modified version of LS which uses a linear number of equation but,
as a downside, is a further approximation of the probability distribution over the induced
CP-nets.

3.2 Voting Rules

Let P be the set of all CP-net profiles P of m voters over a set of alternatives X, a CP-voting
rule r : P → X is a function that maps each profile P into a alternative r(P ) ∈ X.1

We define four CP-voting rules by combining the two aggregation methods PR and LS
presented in Definition 5 and 6 with the two possible ways of extracting an optimal outcome
from a PCP-net presented in Definitions 3 and 4:

• PRO: PR and most probable optimal outcome;

• PRI : PR and optimal outcome of most probable induced CP-net;

• LSO: LS and most probable optimal outcome;

• LSI : LS and optimal outcome of most probable induced CP-net.

Computing the optimal outcome for PRO and PRI is polynomial if the graph of the resulting
PCP-net has bounded width. This is the O-boundedness condition introduced at the end of
Section 3.1.

We first observe that PRI returns the same result as the sequential voting rule with
majority [11], that consists of applying the majority rule “locally” on each issue in the order
given by O.

1In what follows we assume CP-voting rules are resolute and return a unique winner.



Theorem 1 Given any profile of CP-nets, PRI produces the same result as sequential vot-
ing with majority.

Proof. Consider a variable Xi with domain {xi, x̄i}, and an assignment u for the parents of
Xi. With sequential voting we choose the value of the domain that corresponds to the first
value of the ordering that maximizes the following:

max
j∈{1,··· ,m}

{[
∑

Cj :xi>x̄i|u

P(Cj)], [1−
∑

Cj :xi>x̄i|u

P(Cj)]}.

With PRI , we create a PCP-net that has, for the row in the PCP-table of Xi corresponding
to assignment u for its parents, the probability

∑
Cj :xi>x̄i|u P(Cj) for xi > x̄i and 1 −∑

Cj :xi>x̄i|u P(Cj). To compute the most probable induced CP-net we choose the ordering
with maximal probability, thus:

max
j∈{1,··· ,m}

{[
∑

Cj :xi>x̄i|u

P(Cj)], [1−
∑

Cj :xi>x̄i|u

P(Cj)]}.

To compute the optimal outcome of this CP-net, we choose the first values of the orderings
that appear in the CP-table. This is for a generic variable Xi and assignment u, thus is true
for all the variables and assignment of their parents. �

The four CP-voting rules defined above can give different results. For example, consider a
PCP-net on two variables X1 and X2 with the PCP-tables (x1 > x̄1, 0.6), (x1 : x2 > x̄2, 0.6)
and (x̄1 : x2 > x̄2, 0). The most probable induced CP-net has x1 > x̄1, x1 : x2 > x̄2 and
x̄1 : x̄2 > x2, thus x1x2 is the optimal outcome. However, the most probable optimal outcome
of the PCP-net is x̄1x̄2. Therefore, PRO (respectively, LSO) will differ from PRI (resp. LSI)
on a profile P that includes this CP-net. We can also prove the following property:

Theorem 2 There exists a profile of CP-nets P such that {PRO(P ), PRI(P )} ∩
{LSO(P ), LSI(P )} = ∅.

Proof. Let us take the following profile P of four CP-nets over two variables A and B:

• C1 with probability 0.095. C1 has the edge from X1 to X2 and CP-tables: x1 > x̄1

and x1 : x2 > x̄2, x̄1 : x̄2 > x2.

• C2 with probability 0.505. C2 has the edge from X1 to X2 and CP-tables: x1 > x̄1

and , x1 : x̄2 > x2, x̄1 : x2 > x̄2.

• C3 with probability 0.005. C3 does not have the edge fromX1 toX2 and has CP-tables:
x̄1 > x1 and x2 > x̄2.

• C4 with probability 0.395. C4 does not have the edge fromX1 toX2 and has CP-tables:
x̄1 > x1 and x̄2 > x2.

Proportion gives us the PCP-net (x1 > x̄1, 0.6) and (x1 : x2 > x̄2, 0.51), (x̄1 : x2 >
x̄2, 0.1), while LS outputs (x1 > x̄1, 0.59) and (x1 : x2 > x̄2, 0.29), (x̄1 : x2 > x̄2, 0). Thus
we obtain that PRO(P ) = x̄1x̄2, PRI(P ) = x1x2, LSO(P ) = x1x̄2 and LSI(P ) = x1x̄2. �

4 Axiomatic Properties

A first way to compare the four voting rules is by checking if they satisfy various desirable
axiomatic properties [16].



• Anonymity holds when the result is not sensitive to any permutation of the voters
(that is, given a permutation σ on voters, r(σ(P )) = r(P )).

• Neutrality holds if, for any profile P and any permutation σ on alternatives X, then
r(P,X) = r(P, σ(X)).

• Homogeneity holds when, for any profile P and any s ∈ N, we have r(P ) = r(sP ).

• Opt-Monotonicity holds if, given two profiles P = (C1, · · · , Cm) and P ′ =
(C ′1, · · · , C ′m) where C ′i is obtained by Ci by changing the CP-tables so that r(P )
is the optimal outcome for C ′i, we have r(P ) = r(P ′)

• Consistency holds if, given two disjoint profiles P1 and P2 such that r(P1) = r(P2),
we have r(P1 ∪ P2) = r(P1) = r(P2).

• Participation holds if, for any profile P and any CP-net C, we have r(P ∪ {C}) >C

r(P ).

• Consensus holds if, for any profile P = (C1, · · · , Cm), there is no alternative o such
that o >Ci

r(P ), for all i ∈ {1, · · · ,m}.

Anonymity and neutrality both hold for all four voting rules. We know PRI satisfies a
stronger version of monotonicity and consistency (hence homogeneity) as it coincides with
the sequential voting on O-legal profiles studied by Lang and Xia [11].

Theorem 3 PRO satisfies homogeneity.

Proof. Consider a profile P = (C1, f1), · · · , (Ck, fk) from which we can get the normalised
frequencies (C1,

f1
m ), · · · , (Ck,

fk
m ). Considering N times each CP-net, we obtain the following

distribution over Nm CP-nets P ′ = (C1, Nf1), · · · , (Ck, Nfk) with the following normalised
frequencies (C1,

Nf1
Nm ), · · · , (Ck,

Nfk
Nm ). The probability of a generic CP-net Ci in P ′ is Nfi

Nm =
fi
m which is the same as the probability generated by P . �

Theorem 4 LSO and LSI satisfy homogeneity.

Proof. In the proof of Theorem 3 we add N copies of each CP-net to the original profile
resulting in the same probability distribution over the CP-nets. This fact is true for any
collection of CP-nets, therefore, we generate the same set of equations to minimize, and
thus the same solution (PCP-net). �

Theorem 5 PRO and PRI satisfy opt-monotonicity.

Proof. Let us consider two profiles P = (C1, · · · , Cm) and P ′ = (C ′1, · · · , C ′m) where C ′i is
obtained by Ci by changing the CP-tables so that r(P ) is the optimal outcome for C ′i. Let
Q and Q′ represent, respectively, the PCP-nets obtained using the PR aggregation method
on P and P ′. Let S be the set of rows of the PCP-tables in Q relevant to r(P ). By definition
of PR, the only difference between Q and Q′ is in the probabilities of the rows in S. More
specifically, the changes required to obtain C ′i from Ci are such that the probability of the
orderings favoring the values assigned in r(P ) will be higher in Q′, while those favoring the
values opposite to those in r(P ) will be lower. Thus, we have that r(P ) = r(P ′).

The result for PRI can be directly obtained from Theorem 1, that is, by using the
equivalence of PRI with sequential majority. Let us denote with o the optimal outcome of
Ci. By replacing Ci with C ′i we increase by one the number of votes for the values that are
in r(P ) and not in o, we decrease by one those votes for values that are in o and not in
r(P ) and we leave the vote count the same for the other values (that is, the common ones)
unchanged. Thus, since r(P ) was the winner for sequential majority given P it will still be
the winner given P ′. Given Theorem 1 we can conclude that the same holds for PRI . �



Theorem 6 PRI and PRO satisfy participation.

Proof. We first consider the case r = PRI . Consider a profile P = (C1, · · · , Cm) and an
additional CP-net C. We have to prove that r(P ∪ {C}) >C r(P ). PR gives us a PCP-net
Q for P and a PCP-net Q′ for P ∪ {C}. Since P and P ∪ {C} are O-legal, let X be the
first variable according to O such that r(P ∪ {C})|X 6= r(P )|X and let u = r(P )|PA(X).
This means that in the most probable induced CP-net of Q there is a preference statement
u : r(P )|X > r(P ∪ {C})|X and in Q′ there is u : r(P ∪ {C})|X > r(P )|X . Thus the
probability P[u : r(P )|X > r(P∪{C})|X ] ≥ 0.5 in Q, but ≤ 0.5 in Q′. This means that C has
the row u : r(P ∪{C})|X > r(P )|X in X’s CP-table. Thus the outcome r(P ∪{C}) ≥C r(P ).

A similar reasoning applies to the case r = PRO. In the PCP-tables of Q′, the proba-
bilities of the rows corresponding to the CP-tables of C increase with respect to Q. Thus,
for each feature X and each assignment u of its parents, the probability to obtain the first
ranked value in the u rows of C CP-tables, increases. This means that it improves the result
for C. �

Theorem 7 PRI satisfies consensus and PRO satisfies consensus over a single feature.

Proof. We first consider the case r = PRI . Consider profile P = (C1, · · · , Cm) and assume
there is an alternative o s.t. o >Ci

r(P )∀i ∈ {1, · · · ,m}. Since P is O-legal, let X be the first
variable according to O such that o|X 6= r(P )|X . Let u be the assignment to X’s parents in
o and r(P ) (o|PA(X) = r(P )PA(X) since X is the first variable according to O in which they
differ). Since o >Ci

r(P )∀i ∈ {1, · · · ,m}, it must be that u : o|X > r(P )|X∀Ci. Let us now
consider the PCP-net Q obtained from P by PR. It is easy to see that in the PCP-table
of X the probability of u : o|X > r(P )|X will be strictly higher than the probability of
u : o|X < r(P )|X , which implies that the most probable induced CP-net must have the row
ui : o|X > r(P )|X . The optimal outcome of the most probable induced CP-net must have
the assignment o|X for the variable X because is ranked first in the table in the u row. But
r(P )|X 6= o|X and we have a contradiction.

A similar reasoning applies to the case r = PRO, but in a weaker version. We will prove
that, for any profile P , there is no alternative o such that o differs from r(P ) on only a single
variable and o >Ci r(P )∀Ci. Assume that there were an alternative o such that o >Ci r(P ),
∀Ci and o differs from r(P ) only on the variable X. The probability of u : o|X > r(P )|X
in the PCP-table of X is equal to 1 because all the CP-nets in the profile prefer o to r(P ).
Thus the probability of r(P ) is equal to 0, and we have a contradiction. �

In conclusion, the aggregation method PR, generating the voting rules PRO and PRI ,
satisfies a good number of desirable axiomatic properties. Obtaining results for the LS
method is rather hard, given that it is based on numerical optimization. In the next section
we will compare the two methods experimentally.

5 Experimental analysis

In this section we test the quality of the outcomes of the four voting rules defined in Sec-
tion 3.2. We compare the results of these four voting rules with a baseline of random dic-
tatorship named RAND, which outputs the optimal outcome of a random CP-net in the
profile. We compare these five voting rules using two different scoring functions, each of
which is computed using dominance queries on the input profile of CP-nets.

First, given the intractability of the LS method, we introduce the following approxima-
tion of LS called L̃S:



Definition 7 Let P be a profile of CP-nets. The L̃S aggregation method defines a PCP-net
as the LS method (Definition 6) but solving the following problem:

argmin
q∈[0,1]r

k∑
i=1

(fCi(q)− p(Ci))
2

where Ci are the k CP-nets observed in the profile P .

The L̃S method requires exactly m equations, where m is the number of individuals in the
profile, while LS would require an exponential number of equations. Thus, in the experiments
we use L̃SO and L̃SI .

We now define the two notions of score we will use to compare the outcomes of the voting
rules. Let F and G be two CP-voting rules, and let T be a set of O-legal CP-profiles which
are randomly generated. Given a profile P , we first define two functions Dom>(F,G, P )
and Dom<(F,G, P ) as follows: Dom>(F,G, P ) returns True if the number of CP-nets in
P where the outcome F (P ) dominates G(P ) is greater than the maximum between the
number of CP-nets where the outcomes are incomparable and the number of CP-nets where
G(P ) dominates F (P ); it returns False if Dom>(G,F, P ) = True; and it returns None
otherwise. Dom<(F,G, P ) returns True if Dom>(G,F, P ) = True; it returns False if
Dom>(F,G, P ) = True; and it returns None otherwise.

We use the following notion of pairwise score:

PairScore(F,G) = DomT
>(F,G)−DomT

<(F,G)

where DomT
>(F,G) and DomT

<(F,G) are:

• DomT
>(F,G) = (#{P ∈ T | Dom>(F,G, P ) = True}) \#T

• DomT
<(F,G) = (#{P ∈ T | Dom<(F,G, P ) = True}) \#T

Observe that this score belongs to the interval [−1, 1]. Our second scoring function is
inspired by Copeland scoring:

CopelandScore(F ) =
∑

G∈V \{F}

PairScore(F,G)

where V = {PRO, PRI , L̃SO, L̃SI , RAND}. Observe that this score belongs to the interval
[−4, 4].

In the first set of experiments we compute the CopelandScore of the result2 of each
voting rule, varying the number of agents of the input profiles. We considered 300 O-legal
profiles with a fixed number of features (n = 3), at most k = 1 parent per feature, and varied
the number of CP-nets between 1 and 50. Figure 1 plots the CopelandScore for all voting
rules. It is clear that according to this measure the best voting rule is PRI and RAND is
the worst. In general the number of individuals in the profile does not significantly infulence
the CopelandScore of the voting rule.

In the second set of experiments we vary the number of features of the CP-nets in the
profile. We generated 300 profiles each with 50 individual CP-nets where the number of fea-
tures varies between 1 and 5. Each feature has at most k = n

2 parents, where n is the number
of features. Figure 2 shows the CopelandScore for all voting rules, while Figure 3 shows the
PairScore among different pairs of procedures. As in the first experiment, the best voting
rule is PRI and RAND the worst. We observe that the score of RAND increases when the

2In all our experiments ties are broken lexicographically.
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Figure 1: CopelandScore, varying the size of the profile.
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Figure 2: CopelandScore, varying the number of features.
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Figure 3: PairScore and number of features.

number of features increases, but RAND is always worse than the other voting rules. One
possible explanation is that the number of incomparable outcomes in a CP-net increases
when more features are added to the CP-nets. The curves for PairScore(PRI , PRO) and

PairScore(L̃SI , L̃SO) show that PRI is always better than PRO. This same result occurs

for L̃SI and L̃SO. Hence, considering both the PR and the L̃S method, the most proba-
ble optimal outcome (O) is worse than the optimal outcome of the most probable induced

CP-net (I). Moreover, the curves of PairScore(PRO, L̃SO) and PairScore(PRI , L̃SI) show

that PR is always better than L̃S using either the O or I method.

6 Conclusions and future work

We studied four CP-voting rules which are used to obtain a most preferred outcome from
a collection of CP-nets. Our experimental results show that the best method is the PRI

voting rule, which coincides with the result of sequential voting over the input CP-nets. This
is not surprising as sequential voting is defined to coincide with the input profile of CP-nets
as much as possible. However, our approach obtains this same result through the generation
and use of a PCP-net, which can also be used for other collective reasoning tasks, such as
dominance queries. In the future we plan to analyse the case of non-binary features, as well
as investigating dominance queries in PCP-nets.
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