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Abstract. Many mathematical frameworks aim at modeling human
preferences, employing a number of methods including utility functions,
qualitative preference statements, constraint optimization, and logic for-
malisms. The choice of one model over another is usually based on the
assumption that it can accurately describe the preferences of humans
or other subjects/processes in the considered setting and is computa-
tionally tractable. Verification of these preference models often leverages
some form of real life or domain specific data; demonstrating the models
can predict the series of choices observed in the past. We argue that this
is not enough: to evaluate a preference model, humans must be brought
into the loop. Human experiments in controlled environments are needed
to avoid common pitfalls associated with exclusively using prior data in-
cluding introducing bias in the attempt to clean the data, mistaking
correlation for causality, or testing data in a context that is different
from the one where the data were produced. Human experiments need
to be done carefully and we advocate a multi-disciplinary research en-
vironment that includes experimental psychologists and AI researchers.
We argue that experiments should be used to validate models. We detail
the design of an experiment in order to highlight some of the signif-
icant computational, conceptual, ethical, mathematical, psychological,
and statistical hurdles to testing whether decision makers’ preferences
are consistent with a particular mathematical model of preferences.

1 Introduction

In the AI world of preference modeling, researchers often test their preference
framework, particularly in the realm of recommendation systems and other de-
cision support systems. However, most of the testing focuses on usability and



functionality. Almost none that we are aware of looks at whether humans ac-
tually act the way a certain preference model states; i.e., test the underlying
assumptions of the model itself. Interest in testing preference models proposed
in computer science began, for us, when thinking about conditional preference
networks (CP-nets) [6]. Although there are many hundreds of papers on CP-nets,
none that we know of has looked at actually eliciting CP-nets from non-computer
scientists, nor done choice-based tests to see if people act in a manner consis-
tent with having an underlying CP-net preference structure. In this paper we
describe both the process and the challenges that go into designing and im-
plementing a human subjects experiment to test, for instance, the validity of
CP-nets. We argue that human subjects experiments are an important opportu-
nity for both interdisciplinary collaboration as well as extending the scope and
impact of preference research in computer science.

Even within the work on preference elicitation, we have noticed a focus on
optimization (see, e.g., [7]) to make the process fast and not too invasive for the
user. While we celebrate the increasing libraries of preference data available, such
as PrefLib [44], we also have concerns about the efficacy of using those data alone
for validating preference models. In particular, we see many models validated
on the Sushi Dataset [30], e.g. [25], which was generated for a very particular
scenario and yet is now exploited for tests in fundamentally different settings.
When we generalize or attempt to switch the domain of some data we introduce
bias, which can potentially lead to spurious conclusions about the methods under
study [53]. There are usability studies for preference elicitation software (e.g.,
[9,52]) and humans are being brought into the loop in recommender systems (e.g.,
[28,66]). These studies are crucial steps and the efforts should be rewarded and
expanded within the broader communities that work with preferences. Running
good tests with human subjects is necessary and nontrivial.

When we say that we advocate for studies with human subjects, by this we
do not mean tests involving introspection. There is an urban legend in AI that
the early work on chess involved asking chess players to introspect, and that
this destroyed their intuitive processes. This likely refers to De Groots’ work on
chess:

“The only way of working with ‘systematic introspection’ would have
been to interrupt the process after, say, every two minutes in order to
have the subject introspect, and then continue. A few preliminary trials,
however, with the author as subject showed this technique to be relatively
ineffective as well as extraordinarily troublesome. After each interruption
one feels disturbed and cannot continue normally. Apart from being un-
pleasant for the subject the technique is highly artificial in that it disrupts
the unity of the thought process [16, pp. 80–81].”

If we were to ask athletes to pay active attention to every body movement
during peak performance, quite plausibly they would either disregard our in-
structions or fall short of peak performance due to a lack of focus. This is why
athletes have coaches who monitor them. Likewise, asking decision makers to
divert attention and memory resources away from their task in order to monitor



their decision making introspectively likely interferes with the very process we
are studying, making introspection an ineffective method for eliciting preferences
or thought processes [50,51,70]. Indeed, without actively allocating cognitive re-
sources to commit information to memory, there is no reason to expect that a
decision maker can accurately recall the deliberations underlying his decision
afterwards. This is why psychologists run laboratory experiments where human
actions in a controlled environment are observed, rather than asking people
how they think. They draw inferences about latent preferences from observable
quantities such as choice proportions, buying or selling prices, reaction times,
eye movements, all of which need not reveal one single consistent picture [39,71].
The challenge is to model the relationship between theoretical constructs (e.g.,
preferences) and observed data (e.g., choices) [59].

2 Preferences in Computer Science

Preference handling in artificial intelligence is a robust and well developed disci-
pline with its own working groups and specialized workshops [23]. Often, much
of the work takes the form of creating or defining models and then analyzing the
computational complexity of various reasoning tasks within these models [8,19].
One such model that has gained prominence since its introduction in 2004 is the
CP-net [6]. A CP-net is a formal model able to capture conditional preference
statements (cp-statements) such as, “For dinner, if I have beef, I prefer fruit to
ice cream for dessert, but if I have fish, I prefer ice cream to fruit for dessert”
and “I prefer beef over fish for dinner.”

Formally, a CP-net [6] consists of a directed graph G = 〈V,E〉, where the
nodes V represent variables (sometimes called features) of an object, each with
its own finite domain or set of values. For each variable Vi in the graph there
is a possibly empty set of parent variables Pa(Vi). For each variable, an ordinal
preference relation over its values is specified by a collection of cp-statements,
called a conditional preference table (CPT). The assignment of values to Pa(Vi)
can affect the preference relation over Vi. For example, in Figure 1 the variable
Protein can take the values beef or fish and beef is preferred. As Protein has
no parents, there is only one cp-statement. However, Pa(dessert) = Protein
and therefore, depending on the assignment to Protein either fruit is preferred
to ice cream or vice versa.

A CP-net is a compact representation of the preference graph on outcomes.
An outcome is a complete assignment of values to variables. The outcome graph
GO = 〈VO, EO〉 has nodes representing each possible set of values for the feature
variables, and a directed edge between any two nodes that differ on exactly one
feature value. The direction of the edge is determined by the preference over that
feature, conditioned on the (otherwise fixed) values of its parent variables. The
transitive closure of the preference graph gives the partial order over outcomes
specified by the CP-net. A sequence of worsening flips is a directed path from an
outcome o to o′ through the outcome graph. This flipping sequence, if it exists,
proves that outcome o is preferred to o′. We call this relation dominance and it
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Fig. 1. A simple CP-net (left) and the induced preference graph over outcomes (right).

is NP-hard to compute in the general case. Part of the difficulty of computing
dominance arises because the outcome graph is exponentially larger than the
CP-net graph, and improving flipping sequences can be be exponentially long
[6]. Tractable subproblems exist (such as when the graph has the shape of a
directed tree), as well as computational heuristics for determining dominance
[34]. Understanding the CP-net as a human decision making tool may help us
formalize other cases where reasoning with CP-nets is tractable, such as when
the preference graph has low degree or the dominance relation has short flipping
sequences [2].

Preference representation and reasoning plays a key role in many other areas
broadly included under the umbrella of Artificial Intelligence (AI). For example,
within the area of constraint reasoning [62], the annual Max-sat solver com-
petition6 includes problem instances that encode both hard constraints and soft
preferences for domains such as scheduling, time-tabling, and facility location.
Both traditional social choice and computational social choice [12] are fields that
actively work with choice data and are beginning the transition towards working
with repurposed data explicitly [44, 63]. However, these fields are still primar-
ily focused on worst case assumptions, not behavioral or explanatory models of
human decision making. Various forms of weighted logic representations such
as penalty logics [17], possibilistic logics [20], and answer set programs with soft
constraints [72] all explicitly rank states (assignments to all parameters) of the
world. This ordered set of states is often interpreted as preferences over the states
themselves. These fields primarily focus on algorithms for and quantifying the

6 http://maxsat.ia.udl.cat/introduction/.



complexity of reasoning with choice data and preference models; testing these
models and theories against human choice behavior is not a central focus.

The data focused fields of machine learning and data mining investigate
preferences both implicitly and explicitly when working with, for example, large
volumes of customer data [27]. This is perhaps most obvious in the sub-fields of
recommender systems [61] and preference learning [22]. The objective in both
of these areas is to learn and interpret observed choices (data) in order to make
tangible recommendations or predictions, e.g. algorithms for the Netflix Prize
Challenge [5] or Amazon product recommendations [35]. These areas are well
developed preference handling fields where data are readily available from both
academic sources [3] and as part of a number of industrial or commercial licenses
or competitions (e.g. Kaggle, and the Yelp Academic Datasets). However, often
these systems are only evaluated on their ability to minimize an error or loss
function [5, 61] when compared to held out choice data (i.e., data not in the
training set). The explicit goal of these systems is not to understand the features
of a user’s internal preference reasoning or if the system itself can affect the user’s
explicit choice.

Humans are being brought into the loop in more and more areas of computer
science, often leading to important and exciting impacts. More researchers are
focusing on understanding how users reason internally and why users implement
recommendations [18, 56, 66]. Trust building through explanation in recommen-
dation systems is becoming standard practice due to its increased effectiveness
in leading to implemented recommendations [55]. Additional experiments with
human subjects have also helped to validate activities like learning preferences
through click tracking [28] and understanding the cognitive burden of asking cer-
tain preference queries [9]. The field of computer-human interaction (CHI) often
performs studies of human behavior, validating models with laboratory exper-
iment. Indeed, the most recent ACM Computer-Human Interaction conference
(ACM:CHI 2014) provided courses on survey design and performing human stud-
ies [40,47]. However, in the broad set of communities that deal with preferences
in AI, the human element is still often misunderstood.

The omission of human centered testing bypasses both a host of practical
considerations and formal verification of preference models. These problems re-
quire controlled human subjects experiments and offer exciting opportunities for
cross disciplinary research. There are over 800 references to the original CP-nets
paper with not a single human subjects study to investigate whether a CP-net
is a model of human choice, nor any testing of the model for consistency with
respect to the way individuals reason about individual preference.

3 Legal Considerations in Human Subjects Research

Collecting data from human participants involves a panoply of challenges in-
cluding important legal and ethical considerations that are sometimes poorly
understood or considered by researchers. We have encountered colleagues in the



US7 and abroad from non-social science disciplines who had unknowingly broken
laws by illegally gathering data from humans without undergoing appropriate
prior review by an Institutional Review Board (IRB) and without undergoing
legally required ethics training. While the IRB process can be cumbersome, it is
an important step in using human subjects data. Modern tools such as Amazon’s
Mechanical Turk are a key resource [14, 43] that many in preference handling
are embracing for collecting human subjects data [41].

Data from humans may or may not be considered human subjects data.
Studying completely anonymized data sets is usually not considered human sub-
jects research; hence, the ease of using data from a repository such as PrefLib [44]
or the UCI Machine Learning Repository [3]. But if one can link data to the in-
dividual from whom those data came, then one operates under the strictures
of human subjects research regulations. In many cases, however, an expedited
process is in place when an IRB officer deems a study exempt, due to minimal
risk, and waives the requirement of a full review by the board. Reviews by the
board will evaluate a vast range of considerations or requirements, of which we
review a few.

Incentivization: Generally, research in experimental psychology rewards
participants in one of two major ways. Most experiments recruit undergraduate
psychology students in exchange for course credit, this is commonly referred to
as the “subject pool.” Other experiments pay participants with cash or other
rewards. Decision making experiments in this category often give some of the
chosen options as real rewards in order to motivate participants to invest cog-
nitive effort and reveal true preferences. Generally, behavioural and experimen-
tal economists disregard studies that do not link rewards to performance as
being “insufficiently incentivized” [29]. There are also considerations of “over-
incentivization” in that very large rewards can be blocked by some IRBs for
being coercive. Another consideration is whether participants are allowed to re-
ceive payments, e.g., based on age, legal, or immigration status.

Informed Consent & Deception: Since the infamous “Milgram experi-
ments” [45] in which participants were led to believe that they were torturing
others, ethical issues in human subjects research have been discussed in great de-
tail. Many protections have been put in place to protect participants in psychol-
ogy, economics, and medical experiments from being harmed. Scientists and lab
personnel are required to undergo extensive training, e.g., the Collaborative Insti-
tutional Training Initiative (CITI, https://www.citiprogram.org/), before they
may carry out research on humans. Ethical issues of informed consent emerged
prominently in the mass media recently when it came to light that Facebook
carried out social and emotional experiments on some of its users without clear-
cut informed consent [68]. In behavioural and experimental economics, outright
deception is often frowned upon [29].

7 Human-subjects standards vary from country to country and are also sometimes
imposed by international academic societies.



Confidentiality: It is straightforward that the protection of human
subjects, besides avoiding immediate bodily or psychological harm, starts
with proper confidentiality assurances. Considerations of what constitutes
“anonymized” data is a growing concern in computer science and other dis-
ciplines. High-profile cases in recent years have shown that even a sequence of
movie rental dates can be enough to discern personally identifiable information
from a supposedly anonymized dataset [49]. Besides the obvious concerns about
data trails from scheduling participants, time-stamped electronic data collection,
and accounting records of payments, the use of cloud-based tools, such as stor-
age or email, where servers may reside outside the country, or with commercial
providers, threatens confidentiality.

4 Perspectives from Mathematical Psychology

Let C be a finite set of choice alternatives, and let � denote pairwise preference,
i.e., x � y with x, y ∈ C denotes that a person strictly prefers x to y. Many
models of preferences, including CP-nets, require � to be transitive.

How would one test whether decision makers’ preferences are transitive? Psy-
chologists differentiate between theoretical constructs and observables. A binary
preference relation, a real valued utility function, a CP-net, are theoretical con-
structs that we cannot observe directly, just as a physicist cannot observe gravity
itself. In decision making, actual choices made by actual people are observables
that are presumably related to the latent construct, just as an apple falling is
an observable manifestation of gravity.

A major conceptual, mathematical, and experimental challenge for testing
theories about preferences comes from the fact that decision makers experience
uncertainty in what to choose when faced with multi-attribute options in which
attributes trade off in complex ways. Experimentally, we observe substantial
amounts of variability between people and even within a single person over
repeated choices among the same options. It is not uncommon for a decision
maker to choose x over y on 70% of occasions, and y over x otherwise, even within
a one-hour study. This led economists and psychologists to mathematically model
uncertainty and variability in choice. Arguably, the most natural way to model
uncertainty in choice is via probabilistic models [4, 10,36–38,67].

There are two major classes of probabilistic choice models. One assumes that
the theoretical construct of preference is deterministic but choices are probabilis-
tic, the other assumes that the theoretical construct itself is probabilistic. For
transitivity, the first model type assumes that each decision maker has one fixed
deterministic preference � over the course of the experiment, whereas the lat-
ter model casts preferences as a probability distribution over a set of transitive
preferences. For CP-nets the analogue is to distinguish two major possibilities:

1. the decision maker uses one single fixed CP-net, but makes probabilistic
errors in revealing this CP-net in overt choices;

2. the choice probabilities are induced by an unknown probability distribution
over a collection of CP-nets.



An error specification may assume that the decision maker has unknown
preference �, and if x � y then she is more likely to pick x than y, formally and
more precisely,

Pxy > τ, with a bound on error rates of 1− τ ≤ 1

2
. (1)

A random preference specification considers a (finite) collection R of permissible
preference relations (e.g., transitive relations, CP-nets, etc.), a probability dis-
tribution P on R, and models the binary choice probability Pxy as a marginal
probability

Pxy =
∑
�∈R

P(x � y). (2)

Characterizing the binary choice probabilities that are consistent with a ran-
dom preference specification (2) can be mathematically and computationally
prohibitive. In the case that R is the collection of all strict linear orders over a
finite set C, the binary choice probabilities (2) form a convex polytope known as
the linear ordering polytope [21,24,33]. The mathematical structure of this poly-
tope is known only for small sizes of C and finding a complete minimal description
in terms of facet-defining inequalities is computationally hard [42]. Building a
random preference model in which the collection of permissible preferences R is
composed of CP-nets would require that we understand the permissible binary
choice probabilities (2). The currently standard approach would be to employ
methods from polyhedral combinatorics, by defining and studying appropriate
CP-net-polytopes, in which probability distributions over CP-nets are conceptu-
alized as convex combinations of deterministic CP-nets.

We have sketched the conceptual and mathematical challenge of defining un-
certain choices induced by theoretical preferences that form CP-nets, using prob-
abilities. The next challenge is that those probabilities {Pxy |x 6= y;x, y ∈ C},
in turn, are theoretical constructs. If we are to study CP-nets in the laboratory
and if we are to allow different decision makers to use CP-nets differently, then
we need to draw inferences about probabilities from finite samples using appro-
priate statistical tools. Both the error models (1) and the random preference
models (2) impose multiple simultaneous order-constraints on the parameters of
joint Bernoulli processes. This causes serious challenges in maximum-likelihood
methods because point estimates may lie on the boundary of the parameter
space (e.g., on a face of a convex polytope) where standard likelihood theory
breaks down. Frequentist and Bayesian order-constrained likelihood-based infer-
ence methods have only become available recently [15, 32, 48, 59]. Some of the
algorithms, e.g., for computing Bayes Factors between two competing convex
polytopes, are computationally expensive, with current researchers sometimes
using thousands of CPU-hours per Bayes Factor.8

8 For an example of the complexities involved in testing transitivity of preferences,
including a critical review of the prior literature, see, e.g. [11, 57,58,60].



The task, then, for a quantitative test of CP-nets in individual decision mak-
ers, includes: the development of “probabilistic specifications” that represent the
uncertainty experienced by the decision maker, the adoption of suitable statis-
tical tools, and the design and implementation of an experiment that generates
data suitable for either testing the mathematical model as a hypothesis or for
selecting between the model for CP-nets and alternative theoretical proposals.
Both the mathematical characterization and the statistical inference involve sig-
nificant mathematical and computational challenges.

5 Other Considerations for Laboratory Experiments

In defining a laboratory experiment on human decision making, attention must
also be give to the following issues which, while not legal or ethical in nature,
can affect the design and implementation of an experiment.

Data bias: Statistical inferences from finite sample data generally require
repeated observations either from multiple people or from a given participant.
In order to eliminate potential biases and the effect of irrelevant variables, a
decision-making experiment asking participants to decide among choice options
can implement a variety of “cross-balancing” precautions. These include, e.g.,
showing a given choice option randomly in different locations on a display to com-
pensate for attentional biases and making different stimuli “equally complex” to
balance cognitive load. Statistical tests and analyses often assume independent
and identically distributed observations. These assumptions affect the experi-
mental design itself, e.g., separating repeated observations through decoys to
attenuate violations of independence.

Correlation vs. causality: This has important implications for selecting
experimental methods over data mining or other approaches. If one wishes to
make causal attributions that values in one variable “cause” outcomes in another
variable, one needs to use random assignment to experimental conditions (e.g.,
placebo versus treatment).

Falsifiability, diagnosticity, and parsimony: According to these prin-
ciples, theoretical predictions motivate what stimuli to use and hence precede
data collection. Epistemologically, restrictive theories are favored because they
lead to falsifiable predictions [54]. There are at least three major ways in which
behavioral scientists use statistical inference.

1. Many scholars support a theoretical claim by statistically rejecting a null
hypothesis of “no effect,” a practice that has come under intense criticism
[13,46,69].

2. Others, similar to data mining methods, formulate mathematical models and
use statistics to estimate parameters through data fitting, then interpret the
inferred parameter values in terms of scientific primitives. Oftentimes the
validity or replicability of the findings are assessed through goodness-of-fit
on hold-out samples or through predictions about future data.



3. More and more behavioral scientists use Bayesian methods to carry out
competitions among theories that vary in their parsimony, by weighing prior
beliefs with empirical evidence, and penalizing flexible models [31,48].

Several disciplines within social science are currently engaged in a major
debate about replicability,9 publication bias, and scientific integrity [26, 64, 65].
Most social science journals only consider novel findings for publication, leading
some researchers to draw scientific conclusions from very slight statistical effects,
and several high-profile scholars have been accused and/or found guilty of faking
their data. The practical consequence of the recent debate is that researchers
must take care to ensure that their models and experiments stem from rigorous
theories, which make precise predictions that can be tested in a laboratory setting
through the use of appropriately applied statistics.

6 Case Study: The CP-net Experiment

We have recently completed data collection on an experiment to test whether de-
cision makers subjectively represent preferences in a way that is consistent with
a mathematical CP-net representation. We have incorporated the considerations
above with many additional practical and logistic constraints.

A good rule of thumb for running a first experiment in a given domain is to
start simple. Since there is no prior empirical work on actual CP-nets of actual
people, we needed to design the study without having to hypothesize too many
details about CP-nets that are suitable for the domain under consideration.
Otherwise, were we to conclude that “our” CP-net is not descriptive of our
participants, we would not learn much about the general descriptive validity of
CP-nets. If we allow all CP-nets on a given set of choice options as potential
preference states, then we need to limit the number of CP-nets that are possible.
We do not want to make the CP-nets trivial but we also cannot make them overly
complex as it will lead to intractable experiments. Therefore we limit ourselves
to acyclic dependency graphs with four binary nodes/variables. This means that
our CP-nets have 16 choice alternatives. This permits a rich set of preference
states, exactly 481,776 distinct CP-nets (computed as all possible non-degenerate
boolean functions on n = 4 binary variables [1]).

The next major set of considerations is to decide on actual stimuli that are
both interesting and that may tell us something about everyday decision mak-
ing, at least at face value. Furthermore, at least some of the stimuli need to
be ‘deliverable’ as real prizes while the other ones need to be ‘cross-balanced.’
We therefore selected two domains, restaurant menu choices (since they are com-
mon hypothetical illustrations in the CP-net literature) and choices among retail
goods or services. For example, for the restaurant menu options we chose “ap-
petizer” versus “dessert” as one attribute, “chicken” versus “shrimp” as another
attribute, etc.

9 See, e.g., http://psychfiledrawer.org/.



Since we incentivized our participants by offering them some of their choices
as real rewards, team members spent significant time contacting retail and
restaurant managers to find ways to purchase rewards through university pur-
chase orders and to ensure that a person will be given the exact reward we
specify (as opposed to being able to use, say, a gift certificate in a fungible way).
Likewise, multiple team members agonized over finding a sufficiently rich set of
‘comparable’ stimuli, even for trials that are not used to determine real rewards.
For example, all stimuli need to be credible as potential rewards of a compara-
ble value and payable by a federal grant. Over two domains with 60 participants
the experiment distributed rewards of $4992.00 USD. The distributed rewards
consisted of $2400.00 of prescribed meals at a local restaurant, $220.00 of video
rentals, and $2372.00 of merchandise at the university bookstore.

There are also major tradeoffs between practical, logistical and statistical
prerogatives: Ultimately, participants need to make sufficiently many choices
among sufficiently many options to allow statistical estimation, hypothesis test-
ing, or model selection. We decided to make each “trial” of the experiment a
ternary paired comparison, i.e., two meals are presented and the decision maker
can either express a preference for one, the other, or express “no preference.”
Statistically, this means that each “trial” provides an observation for a trino-
mial random variable. In order to obtain repeated observations, we needed to
show each pair several times, at the risk of making the experiment laborious and
repetitive. Hence, we substituted different “instantiations” of a given “choice”
on different trials, “chicken” on one trial could be “Chicken Marsala” and on
another trial could be “Chicken della Nonna.” However, this means that we may
have introducing many unintended variables that we are not modeled in the
CP-net. Therefore, when showing a participant two meals that share the value
“chicken” for the variable “main dish,” we showed them the identical chicken
dish in both options, so as to make it impossible for them to have a pairwise
preference on a variable that we model as having identical values in both options.

There is a tradeoff between the number of times we ask a user to make a de-
cision and the statistical tests we can then employ to perform reliable statistical
analysis. Since we are asking users to choose between two meals, with 16 total
meals, that gives 120 trials or pairwise comparisons that we must elicit from each
user, and each of these trials must be repeated. Some of our models are convex
(polytopes), in which case we can pool data across subjects even if there are
individual differences between them. Some of our (error) models are not convex
and should best be evaluated separately for each individual. Advanced statistical
methods that do not require asymptotic statistics can get by with fewer than 10
trials per user per question.

The tasks involved in preparing for this experiment include: computing a
list of all 4-variable CP-nets; developing the initial set of variables for each
domain; negotiating agreements with the Institutional Review Board for human-
subject research; getting agreement from vendors to provide specified rewards
(and dealing with the video rental business going out of business before some of
the long term rewards could be redeemed); creating multiple equivalent wordings



of the same reward (e.g., 6 T-shirts in one trial and a half dozen short sleeved
shirts in another); developing and testing the GUIs and interface functionality
on iPads for the experiment. These tasks took about 350–400 person hours. As
members of the team are extremely experienced with navigating the bureaucracy
of IRB approval and negotiating non-fungible rewards with outside vendors, this
number likely underestimates the time required for a first time experimenter.

For data collection, we consider both the participants’ time and the cost of
running the study: 2 sessions for each of the 60 participants and about 90 minutes
per session. There are 5 iPads, but scheduling is complicated, so we ran about
50 experimental sessions to get the data from those 60 participants. The person
overseeing each experimental session spent about an hour for each experimental
session distributing and collecting the informed consent paperwork, making sure
the app was running on the iPads and ready to use, making sure the iPads were
charged, introducing people to the study, answering questions, explaining the
payment, scheduling their second session, making sure the results were uploaded,
making sure each participant’s payment was provided confidentially in a separate
room, making sure the post-test questionnaire was filled out, etc. Thus, the
number of person-hours for running the experiment (about 180 person-hours of
subjects’ time, plus about 100 hours of experimenters’ time) was slightly less
than the time spent preparing the experiment itself.

7 Conclusion

In this paper we have highlighted some of the key pitfalls and challenges associ-
ated with human subjects experiments within preference model testing. Ideally,
experimentalists in AI can use this as both a call to action and as a starting point
for conducting their own experiments both in human subjects labs and lever-
aging the power of online tools such as Mechanical Turk [41, 43]. We have only
skimmed the surface of the relevant literatures in computer science and psychol-
ogy. There is a vast literature on experimental studies in other fields including
decision sciences, experimental economics, medical, and other cognitive studies
areas. We hope this article serves as a jumping off point into the literature.

Data are available in large quantities, but we should resist the temptation
to rely on past data alone when testing a preference modeling framework. Hu-
man experimentation should be part of the testing process. However, in doing
this, we need to pay attention to several conceptual, mathematical, statistical,
computational, legal and ethical considerations, as well as tackle many practi-
cal and logistic complications. We believe that AI and psychology researchers
should work together in this endeavor. For AI researchers, understanding the
functions and limitations of human decision making can lead to the develop-
ment of more accurate models and heuristics in the multitude of areas that
engage with humans and preferences. For psychologists, understanding the com-
putational burden of reasoning with various preference models can inform new
experiments and processes.



We have just completed data collection at the time of acceptance of this
manuscript, after clearing all the significant development and logistical hurdles
we have outlined in this paper. Proper analysis of this data will take months; dis-
crepancies in the publication culture of computer science and psychology means
we must target psychology journal submissions first (as data must be novel for
publication). This will give us the first real experiment which will contemplate
the question of whether or not subjects’ preferences over two domains (retail
and food) are at least noisily consistent with CP-net models and whether or
not, given adequate instruction, the subjects can write these preferences down
in a way that is consistent with their previous choices.
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