A Natural Language Argumentation Interface for
Explanation Generation in Markov Decision Processes

Thomas Dodson, Nicholas Mattei, and Judy Goldsmith

University of Kentucky
Department of Computer Science
Lexington, KY 40506, USA
tcdodson@gmail.com, nick.matteiQuky.edu, goldsmit@cs.uky.edu

Abstract. A Markov Decision Process (MDP) policy presents, for each state,
an action, which preferably maximizes the expected reward accrual over time.
In this paper, we present a novel system that generates, in real time, natural lan-
guage explanations of the optimal action, recommended by an MDP while the
user interacts with the MDP policy. We rely on natural language explanations
in order to build trust between the user and the explanation system, leveraging
existing research in psychology in order to generate salient explanations for the
end user. Our explanation system is designed for portability between domains
and uses a combination of domain specific and domain independent techniques.
The system automatically extracts implicit knowledge from an MDP model and
accompanying policy. This policy-based explanation system can be ported be-
tween applications without additional effort by knowledge engineers or model
builders. Our system separates domain-specific data from the explanation logic,
allowing for a robust system capable of incremental upgrades. Domain-specific
explanations are generated through case-based explanation techniques specific to
the domain and a knowledge base of concept mappings for our natural language
model.

1 Introduction

A Markov decision process (MDP) is a mathematical formalism which allows for long
range planning in probabilistic environments [2, 15]. The work reported here uses fully
observable, factored MDPs [3]. The fundamental concepts use by our system are gen-
eralizable to other MDP formalisms; we choose the factored MDP representation as it
will allow us to expand our system to scenarios where we recommend a set of actions
per time step. A policy for an MDP is a mapping of states to actions that defines a tree
of possible futures, each with a probability and a utility. Unfortunately, this branching
set of possible futures is a large object with many potential branches that is difficult to
understand even for sophisticated users.

The complex nature of possible futures and their probabilities prevents many end
users from trusting, understanding, and implementing the plans generated from MDP
policies [9]. Recommendations and plans generated by computers are not always trusted
or implemented by end users of decision support systems. Distrust and misunderstand-
ing are two of the most often user cited reasons for not following a recommended plan

or action [13]. For a user unfamiliar with stochastic planning, the most troublesome
part of existing explanation systems is the explicit use of probabilities, as humans are
demonstrably bad at reasoning with probabilities [18]. Additionally, it is our intuition
that the concept of a preordained probability of success or failure at a given endeavor
discomforts the average user.

Following the classifications of logical arguments and explanations given by Moore
and Parker, our system generates arguments [11]. While we, as system designers, are
convinced of the optimality of the optimal action the user may not be so convinced. In
an explanation, two parties agree about the truth of a statement and the discussion is
centered around why the statement is true. However, our system design is attempting to
convince the user of the “goodness” of the recommended action; this is an argument.

In this paper we present an explanation system for MDP policies. Our system pro-
duces natural language explanations, generated from domain specific and domain inde-
pendent information, to convince end users to implement the recommended actions. Our
system generates arguments that are designed to convince the user of the “goodness”
of the recommended action. While the logic of our arguments is generated in a domain
independent way, there are domain specific data sources included. These are decoupled
from the explanation interface, to allow a high degree of customization. This allows our
base system to be deployed on different domains without additional information from
the model designers. If an implementation calls for it, our system is flexible enough to
incorporate domain specific language and cases to augment its generated arguments.
We implement this novel, argument based approach with natural language text in order
to closely connect with the user. Building this trust is essential in convincing the user to
implement the policy set out by the MDP [13]. Thus, we avoid exposing the user to the
specifics of stochastic planning, though we cannot entirely avoid language addressing
the inherent probabilistic nature of our planning system.

Our system has been developed as a piece of a larger program working with advis-
ing college students about what courses to take and when to take them. It was tested on
a subset of a model developed to predict student grades based on anonymized student
records, as well as capture student preferences, and institutional constraints at the Uni-
versity of Kentucky [7]. Our system presents, as a paragraph, an argument as to why
a student should take a specified set of courses in the next semester. The underlying
policy is based on the student’s preferences and abilities. This domain is interesting be-
cause it involves users who need to reason in discrete time steps about their long term
benefits. Beginning students' at a university will have limited knowledge about utility
theory and represent a good focus population for studying the effectiveness of different
explanations.

Model construction, verification and validation is an extremely rich subject that we
do not treat in this paper. While the quality of explanations is dependent on the qual-
ity and accuracy of a given model we will not discuss modeling accuracy or fidelity.
The purpose of this work is to generate arguments in a domain-independent way, incor-
porating domain-specific information only to generate the explanation language. The

I Students may begin their college careers as Computer Science majors or switch into the major
later. We consider students to begin with the introductory programming courses, or with the
first CS course they take at the University of Kentucky.

correctness of the model is therefore irrelevant in the context of validating a method
to generate explanations. Through user testing and refinement it is possible to use our
work to assist in the construction, verification, and validation of models meant to be
implemented with end users.

In the next section we will provide background on MDPs and a brief overview of
current explanation systems. In Section 3 we define the model we use as an example
domain. Section 4 provides an overview of the system design as well as specific details
about the system’s three main components: the model based explainer, the case based
explainer, and the natural language generator. Section 5 provides examples of the output
of our system and an overview of the user study we will use to verify and validate our
approach. Section 6 provides some conclusions about the system development so far
and our main target areas for future study.

2 Background and Related Work

Markov Decision Processes A MDP is a formal model for planning, when actions are
modeled as having probabilistic outcomes. We focus here on factored MDPs [3]. MDPs
are used in many areas, including robotics, economics and manufacturing.

Definition 1. An MDP is a tuple, (S,A,T,R), where S is a set of states and A is a set
of actions, and T (s'|s,a) is the probability that state s' is reached if a is taken in state
s, and R(s) is the reward, or utility, of being in state s. If states in S are represented by
variable (attribute) vector, we say that the MDP is factored.

A policy for an MDP is a mapping 7 : S — A. The best policy for an MDP is one
that maximizes the expected value (Definition 2) [15] within a specified finite or infinite
time horizon, or with a guarantee of (unspecified) finiteness. In the case of academic
advising, since credits become invalid at the University of Kentucky after 10 years, we
assume a fixed, finite horizon [2]. Policies are computed with respect to the expected
total discounted reward, where the discount rate Y is such that 0 < y < 1. The optimal
policy with respect to discount ¥ is one that maximizes the total discounted expected
value of the start state (see Definition 2) [2, 15].

Definition 2. The expected value of state s with respect to policy T and discount Y is

V7 (s) :R(s)—i—yz T(s" | m(s),s)*xV(s). (1

s'es

The optimal value function V* is the value function of any optimal policy 7* [2,15].
We use the optimal policy, and other domain and model information, to generate natural
language explanations for users with no knowledge of probability or utility theory.

Explanation Systems Prior work on natural language explanation of MDP policies
is sparse, and has focused primarily on what could be called “policy-based explana-
tion,” whereby the explanation text is generated solely from the policy. The nature of

such systems limits the usefulness of these explanations for users who are unfamil-
iar with stochastic planning, as the information presented is probabilistic in nature.
However, these algorithms have the advantage of being entirely domain-independent.
A good example of such a system is Khan et al.’s minimal sufficient explanations [9],
which chooses explanatory variables based on the occupation frequency of desired fu-
ture states. Note that, while the algorithms used in policy-based explanation systems
are domain-independent, the explanations generated by such systems often rely on the
implicit domain-specific information encoded into the model in the form of action and
variable names. Other work has focused on finding the variable which is most influen-
tial to determining the optimal action at the current state [5], while using an extensive
knowledge-base to translate these results into natural language explanations.

Case-based and model-based explanation systems rely, to different extents, on do-
main specific information. To find literature on such systems, it is necessary to look
beyond stochastic planning. Case-based explanation, which uses a database of prior de-
cisions and their factors, called a case base, is more knowledge-light, requiring only the
cases themselves and a model detailing how the factors of a case can be generalized
to arbitrary cases. Care must be taken in constructing a case base in order to include
sufficient cases to cover all possible inputs. Nugent et al.’s KLEF [14] is an example of
a case-based explanation system. A model-based explanation system, however, relies
on domain-specific information, in the form of an explicit explanation model.

An explanation interface provides explanations of the reasoning that led to the rec-
ommendation. Sinha and Swearingen [17] found that, to satisfy most users, recommen-
dation software employing collaborative filtering must be transparent, i.e., must provide
not only good recommendations, but also the logic behind a particular recommendation.
Since stochastic planning methods are generally not well understood by our intended
users, we do not restrict our explanations to cover, for example, some minimum por-
tion of the total reward [9], and instead choose explanation primitives that, while still
factual, will be most convincing to the user.

3 Model

For this paper we focus on an academic advising domain. We use a restricted domain
for testing which focuses on completing courses to achieve a computer science minor
focus at the University of Kentucky. Our research group is also developing a system
to automatically generate complete academic advising domains that capture all classes
in a university [7]. The long term goal of this ongoing research project is to develop
an end-to-end system to aid academic advisors that build probabilistic grade predictors,
model student preferences, plan, and explain the offered recommendations.

The variables in our factored domain are the required courses for a minor focus in
computer science: Intro Computer Programming (ICP), Program Design and Problem
Solving (PDPS), Software Engineering (SE), Discrete Mathematics (DM), and Algo-
rithm Design and Analysis (ALGO). We include Calculus II (CALC2) as a predictor
course for DM and ALGO due to their strong mathematical components. Each class
variable can have values: (G)ood, (P)ass, (F)ail, and (N)ot Taken. An additional vari-
able is high school grade point average, HSGPA; this can have values: (G)ood, (P)ass,

Domain Specific Domain Model Optimal
Case Base (MDP) Policy

Case based MDP based
La - -
Explainer Explainer
—
Concept v
Base N Natural Language
Generator

Natural language
explanation.

(A)

Fig. 1. System organization and data flow (A) and the dynamic decision network (temporal de-
pendency structure) for the academic advising model (B).

(L)ow. The model was hand coded with transition probabilities derived from historic
course data at the University of Kentucky.

Each action in our domain is of the form, “Take Course X,” and only affects vari-
able X. Figure 1-B shows the temporal dependencies between classes, and implicitly
encodes the set of prerequisites due to the near certain probability of failure if prerequi-
site courses are not taken first. Complex conditional dependences exist between courses
due to the possibility of failing a course. CALC?2 is not required and we do not place
reward on its completion. Taking it correlates with success in DM and ALGO; we want
to ensure our model can explain situations where unrewarded variables are important.
Most courses in the model have HSGPA, the previous class, and the current class as the
priors (except ICP and CALC2 which only have HSGPA as a prior).

The reward function is additive and places a value of 4.0 and 2.0 on Good and
Passing grades respectively. Failure is penalized with a 0.0. A discount factor of 0.9 is
used to weight early success more than later success. While our current utility function
only focuses on earning the highest grades possible as quickly as possible we stress
that other utility functions could be used and, in fact, are being developed as part of our
larger academic advising research project.

The model was encoded using a variant of the SPUDD format [8] and the optimal
policy was found using a local SPUDD implementation developed in our lab [8,10]. We
applied a horizon of 10 steps and a tolerance of 0.01. The model has about 2,400 states
and the optimal value function ADD has over 10,000 leaf nodes and 15,000 edges.

2 HSGPA is a strong predictor of early college success (and college graduation) and GPA’s
prediction power has been well studied [4].

4 System Overview

Our explanation system integrates a policy-based approach with case-based and model-
based algorithms. However, the model-based system is constructed so the algorithm
itself is not domain-specific. Rather, the explanation model is constructed from the
MDP and resulting policy and relies on domain-specific inputs and a domain-specific
language, in the natural language generation module. Thus, we separate the model de-
pendent factors from the model independent methods. This gives our methods high
portability between domains.

Figure 1-A illustrates the data flow through our system. All domain specific infor-
mation has been removed from the individual modules. We think of each of the modules
as generating points of our argument while the natural language generator assimilates
all these points into a well structured argument to the user. The assimilated argument
is stronger than any of the individual points. However, we can remove modules that
are not necessary for specific domains, e.g., when a case base cannot be procured. This
allows our system to be flexible with respect to a single model and across multiple do-
mains. In addition, system deployment can happen early in a development cycle while
other “points” of the argument are brought online. The novel combination of a case-
based explainer, which makes arguments from empirical past data, with a model-based
explainer, which makes arguments from future predicted data, allows our system to
generate better arguments than either piece alone.

A standard use case for our system would proceed as follows: students would access
the interface either online or in an advising office. The system would elicit user prefer-
ences and course histories (these could also be gleaned from student transcripts). Once
this data has been provided to the system, a natural language explanation would explain
what courses to take in the coming semester. While our current model recommends one
course at a time we will expand the system to include multiple actions per time step.

Our system differs from existing but similar systems such as the one designed by
Elizalde et al. [5] in several important ways. First, while an extensive knowledge base
will improve the effectiveness of explanations, the knowledge base required by our
system to generate basic explanations is minimal, and limited to variables which can
be determined from the model itself. Second, our model-based module decomposes
recommendations from the MDP in a way that is more psychologically grounded in
many domains, focusing on user actions instead of variables [6].

We designed with a “most convincing” heuristic; we attempt to select the factual
statements and word framings that will be most influential to our target user base. This
is in contrast to existing other similar systems which focus on a “most coverage” heuris-
tic [9]. A most coverage heuristic focuses on explaining some minimal level of utility
that would be accrued by the optimal policy. While this method is both mathemati-
cally grounded and convincing to individuals who understand probabilistic planning,
our intuition is that it is not as convincing to the average individual.

4.1 Model Based Explanation

The model-based module extracts information from the MDP model and a policy of rec-
ommended actions on that model. This module generates explanations based on what

comes next — specifically, information about why, in terms of next actions, the recom-
mended action is best. We compare actions in terms of a set of values, called action fac-
tored differential values (AFDVs) for each possible action in the current state. AFDVs
allow us to explain the optimal action in terms of how much better the set of actions at
the next state are. E.g., we can model that taking ICP before PDPS is better because
taking ICP first improves the expected value of taking PDPS in the next step. We can
also highlight how the current action can affect multiple future actions and rewards.
This allows our method to explain complex conditional policies without explicit knowl-
edge of the particular conditional. Through the computation of the AFDVs we are able
to extract how the current best action improves the expected assignment of one or more
variables under future actions.

This method of explanation allows for a salient explanation that focuses on how the
current best action will improve actions and immediate rewards in the next state (the
next decision point). Many studies have shown empirically that humans use a hyperbolic
discounting function and are incredibly risk adverse when reasoning about long term
plans under uncertain conditions [6,20]. This discount function places much more value
on rewards realized in the short term. In contrast to human reasoning, an MDP uses an
exponential discount function when computing optimal policies. The combined effects
of human inability to think rationally in probabilistic terms and hyperbolic cognitive
discounting means there is a fundamental disconnect between the human user and the
rational policy [6, 18]. The disconnect between the two reasoning methods must be
reconciled in order to communicate MDP policies to human users in terms that they
will more readily understand and trust. This translation is achieved through explaining
the long term plan in terms of short term gains with AFDV sets.

To generate a usable set of AFDVs from some state s, we define a method for mea-
suring the value of taking an arbitrary two action sequence and then continuing to follow
the given policy, 7. Intuitively, a set of AFDVs is a set of two-step look ahead utilities
for all the different possible combinations of actions and results. This is accomplished
by modifying the general expression for V” to accommodate deviation from the policy
in the current state and the set of next states:

Vi (s,ar,a2) — R(s) = }/Z T(s'|s,a1)-[R(s") +y Z T(s"|s' a0)-V™(s")]. (2)

s'es s"es

Using V¥, we can then compute a single AFDV object for the action to be explained,
7(s), by computing the value of the two step sequence {7(s),a} and the value of another
two step sequence {a;,a} and taking the difference,

A (s, a;,a) = Vi (s,n(s),a) — VI (s,a;,a). 3)

To compute a full set of AFDVs for the explanation action, 7(s), this computation is
done for all a; € A\ 7(s) and for all a € A.

In order to choose variables for explanation, we compute, for each i, A* (s, w,a;,a),
to find out how many actions’ utilities will increase after having taken the recommended
action. This set of counts gives the number of actions in the current state which cause a
greater increase in utility of the action a than the recommended action. We define

xi(a) = [{i: A%(s, m,ai,a) < 0} Cy

Note that we may have for alla € A : x7 (a) > 0, since only the sum of the AFDV set
over q; for the optimal action is guaranteed to be greater than or equal to the sum for any
other action. We choose the subset of A for which x7(a) is minimal as our explanation
variables, and explain 7(s) in terms of its positive effects on those actions. We can
also decompose the actions into corresponding variable assignments and explain how
those variables change, leading to higher reward. By focusing on actions we reduce
the overall size of the explanation in order to avoid overwhelming the user, while still
allowing the most salient variables of the recommended action to be preserved. If more
variables are desired, another subset of A can be chosen for which x7(a) is greater
than the minimum, but less than any other value. While the current method of choosing
explanation variables relies on knowledge of the optimal policy, the AFDV objects are
meaningful for any policy. However, our particular method for choosing the subset of
AFDVs for explanation relies on the optimality of the action 7(s), and would have to
be adapted for use with a heuristic policy.

For example, the explanation primitive for a set of future actions with 7(s) =
act _PDPS, x¥(act SE) = xT(act_DM) = 0, xT(act ALGO) = 1, and x7(a) = 2 for all
other a is:

The recommended action is act_PDPS, generated by examining long-term future re-
ward. It is the optimal action with regards to your current state and the actions available
to you. Our model indicates that this action will best prepare you for act_SE and act_DM
in the future. Additionally, it will prepare you for act_ ALGO.

It is possible to construct pathological domains where our domain independent ex-
plainer fails to select a best action. In these rare cases, the explainer will default to
stating that the action prescribed by the given policy is the best because it leads to
the greatest expected reward; this prevents contradictions between the explanation and
policy. The AFDV method will break down if domains are constructed such that the
expected reward is O within the horizon (2 time steps). This can happen when there
are balanced positive and negative rewards. For this reason, we currently restrict our
domain independence claims to those domains with only non-negative rewards.

4.2 Case-Based Explanation

Case-based explanation (CBE) uses past performance in the same domain in order to
explain conclusions at the present state. It is advantageous because it uses real evi-
dence, which enhances the transparency of the explanation, and analogy, a natural form
of explanation in many domains [14]. This argument from past data combined with our
model-based argument from predicted future outcomes creates a strong complete ar-
gument for the action recommended by the optimal policy. Our case base consists of
2693 distinct grade assignments in 6 distinct courses taken by 955 unique students. This
anonymized information was provided by the University of Kentucky, about all courses
taken by students who began their academic tenure between 2001 and 2004.

In a typical CBE system, such as KLEF [14], a fortiori argumentation is used in
the presentation of individual cases. This presents evidence of a strong claim in order to
support a weaker claim. In terms of academic achievement, one could argue that if there

is a case of a student receiving a “Fair” in PDPS and a “Good” in SE, then a student
who has received a “Good” in PDPS should expect to do at least as well.

In our system, a single case takes the form of: scenariol — action — scenario2,
where a scenario is a partial assignment of state variables, and scenario2 occurs imme-
diately after action, which occurs at any time after scenariol. In particular, we treat a
single state variable assignment, followed by an action, followed by an assignment to
single state variable, usually differing from the first, as a single case. For example, a
student having received an A in ICP and a B in PDPS in a later semester comprises a
single case with scenariol = {var_ICP = A} — action = take_PDPS — scenario2 =
{var_PDPS = B}. If the same student had also taken CALC2 after having taken ICP,
that would be considered a distinct case.

In general, the number of state variables used to specify a case depends on the
method in which the case base is used. Two such methods of using a case base are
possible: case aggregation and case matching [1]. When using case aggregation, which
is better suited to smaller scenarios, the system combines all matching cases into rel-
evant statistics in order to generate arguments. For example, case aggregation in our
system would report statistics on groups of students who have taken similar courses to
the current student and explain the system recommendation using the success or failure
of these groups of students. When using case matching, a small number of cases, whose
scenarios match the current state closely, would be selected to generate arguments [14].
Case matching methods are more suited to larger scenarios, and ideally use full state
assignments [1]. For example, case matching in our system would show the user one or
two students who have identical or nearly identical transcripts and explain the system
recommendation using the selected students’ transcripts.

Our system uses a case aggregation method, as our database does not have the re-
quired depth of coverage of our state-space. There are some states which can be reached
by our MDP which have few or no cases. With a larger case base, greater specificity in
argumentation is possible by considering an individual case to be the entirety of a sin-
gle student’s academic career. However, presenting individual cases still requires that
the case base be carefully pruned to generate relevant explanations. Our system instead
presents explanations based on dynamically generated statistics over all relevant cases
(i.e., assignments of the variables affected by the recommended action). We select the
relevant cases and compute the likelihood of a more rewarding variable assignment un-
der a given action. This method allows more freedom to chose the action for which we
present aggregated statistics; the system can pick the most convincing statistics from
the set of all previous user actions instead of attempting to match individual cases.

Our method accomplishes this selection in a domain-independent way using the
ordered variable assignments stored in the concept base. We use a separate configuration
file, called a concept base, to store any domain specific information. We separate this
data from the explanation system in order to maintain domain independence. In our
system, there is a single required component of the concept base which must be defined
by the system implementer; an ordering in terms of reward value over the assignments
for each variable, with an extra marker for a valueless assignment that allows us to easily
generate meaningful and compelling case-based explanations. The mapping could also
be computed from the model on start-up, but explicitly enumerating the ordering in

the concept base allows the system designer to tweak the case-based explanations in
response to user preferences by reordering the values and repositioning the zero-value
marker.

For a given state, s, for each variable v; affected by 7(s), we consider the naive
distribution, @(v;), over the values of v; from cases in the database. We compute the
conditional distribution, ¢ (v;|s), over the values of v; given the values to all other vari-
ables in s. Then, for each conditional distribution, we examine the probability of a
rewarding assignment. We then sort the distributions in order from most rewarding to
least, by comparing each one to the probability of receiving the assignment from any
of the naive distributions. Conditional distributions which have increased probability
of rewarding assignments over the naive distributions are then chosen to be used for
explanation.

For a student in a state such that var_ICP = Good, var_CALC2 = Good, and 7 (s,) =
act_PDPS: since act_PDPS influences only var_PDPS, three grade distributions will be
generated over its values: one distribution for all pairs with var_ICP = Good, one with
var_.CALC?2 = Good, and one over all cases which have some assignment for var_PDPS.
If, in the case base, 200 students had var_ICP = Good and var_PDPS # NotTaken with
130 “Good” assignments, 40 “Fair”, and 30 “Poor”, giving a [0.65, 0.20, 0.15] dis-
tribution; 150 students had var_CALC2 = Good and var_PDPS # NotTaken with 100
“Good”, 30 “Fair”, and 20 “Poor”, giving a [0.67, 0.20, 0.13] distribution; while 650
students had var_PDPS # NotTaken with 300 “Good”, 250 “Fair”, and 100 “Poor”, giv-
ing a[0.47,0.38, 0.15] distribution, then the distributions indicate that such assignments
increase the probability of receiving var_PDPS = Good, and the generated explanation
primitive is:

Our database indicates that with either var_ICP = Good or var_.CALC2 = Good, you
are more likely to receive var_PDPS = Good in the future.

4.3 Natural Language Generator

In explanations generated by our system, particular emphasis is placed on displaying
probabilities in terms that are more comfortable to the target user base, undergraduate
students. A verbal scale has some inherent problems. In medical decision making, Wit-
terman et al. found that experienced doctors were more confident using a verbal, rather
than numeric, scale [21]. Unfortunately, Renooij [16] reports large variability of the
numerical values assigned to verbal expressions between subjects. However, Renooij
found that there was a high level of inter-subject consistency and intra-subject consis-
tency over time, in the ordering of such verbal expressions. Additionally, numerical
interpretations of ordered lists of verbal expressions were less variable than interpreta-
tions of randomly ordered lists [16]. Thus, our explanations replace numerical proba-
bilities with a system of intuitively ordered adverb phrases: very likely (p > 0.8), likely
(p > 0.5), unlikely (p < 0.5), and very unlikely (p < 0.2). Since words at the extremes
of the scale are less likely to be misinterpreted, nearly certain (p > 0.95) and nearly
impossible (p < 0.05) could also be added to the scale.

Though these cutoffs work well for expressing the probabilities of state changes
predicated on some action in an MDP model, they are not well suited for expressing
the probability of a particular variable assignment with some underlying distribution.

In this case, our system simply uses less likely and more likely for effects which cause
the probability of the particular value to be less than or greater than the probability in
the naive distribution.

While MDP-based explanations can be generated in a domain-independent way,
producing domain-independent natural language explanations is more problematic. The
only domain semantics available from the MDP are the names of the actions, variables,
and values. These labels, however, tend to be abbreviated or otherwise distorted to con-
form to technical limitations. Increasing the connection between the language and do-
main increases the user trust and relation to the system by communicating in language
specific to the user [13, 17]. Our system uses a relatively simple concept base which
provides mappings from variable names and assignments to noun phrases, and action
names to verb phrases. This is an optional system component; the domain expert should
be able to produce this semantic mapping when constructing the MDP model.

All of these mappings are stored in the concept base as optional components. The
template arguments that are populated by the explanation primitives are also stored
in the concept base. Each explanation module only computes the relations between
variables. It is up to the interface designer to establish the mappings and exact wordings
in the concept base. We allow for multiple templates and customizable text, based on
state or variable assignment, to be stored in the concept base. This flexible component
allows for as much or as little domain tailoring as is required by the application.

5 Discussion and Study Proposal

Our system successfully generates natural language explanations in real time using
domain-independent methods, while incorporating domain specific language for the
final explanation. The concept base allows designers to insert custom language as a
preamble to any or all of the recommendations. This allows the user interface designer
flexibility as to how much domain, modeling, and computational information to reveal
to the end user.

The runtime complexity of our system, to generate an explanation for a given state,
is 0(n®) where n is the number of actions in the MDP model. Almost all the com-
putational burden is experienced when computing the AFDVs. These could, for very
large domains, be precomputed and stored in a database if necessary. This complexity
is similar to the computational requirements imposed by other MDP explanation sys-
tems [9] and is easily within the abilities of most modern systems for domains with
several thousand states.

Our concept base includes text stating that recommendations depend on grades (out-
comes) the student has received previously, and on the user’s preferences. In many ap-
plications we expect that users do not want to know how every decision in the system
is made; we are building convincing arguments for a general population, not computer
scientists. While technically inclined people may want more information regarding the
model construction and planning, it is our feeling that most users want to understand
what they should do now. Thus, our example explanation does not explain or exhibit
the entire policy. The important concept for our end users is not the mathematical struc-

ture of a policy, but that future advice will depend on current outcomes. After language
substitution, the generated explanations look like:

The recommended action is taking Introduction to Program Design and Problem Solv-
ing, generated by examining possible future courses. It is the optimal course with re-
gards to your current grades and the courses available to you. Our model indicates that
this action will best prepare you for taking Introduction to Software Engineering and
taking Discrete Mathematics in the future. Additionally, it will prepare you for taking
Algorithm Design and Analysis. Our database indicates that with either a grade of A or
B in Introductory Computer Programming or a grade of A or B in Calculus II, you are
more likely to receive a grade of A or B in Introduction to Program Design and Problem
Solving, the recommended course.

This form of explanation offers the advantage of using multiple approaches. The
first statement explains the process of generating an MPD policy, enhancing the trans-
parency of the recommendation in order to gain the trust of the user [17]. It makes
clear that the planning software is considering the long-term future, which may inspire
confidence in the tool. The second statement relies solely on the optimal policy and
MDP model. It offers data about expected future performance in terms of the improve-
ment in value of possible future actions, the AFDVs. The AFDVs are computed using
an optimal policy. That means the policy maximizes expected, long term reward. This
part of the explanation focuses on the near future to explain actions which may only
be preferable because of far future consequences. The shift in focuses leverages the
users inherent bias towards hyperbolic discounting of future rewards [6]. The last state-
ment focuses on the student’s past performance in order to predict performance at the
current time step and explains that performance in terms of variable assignments. This
paragraph makes an analogy between the user’s performance and the aggregated per-
formance of past students. Argument from analogy is very relevant to our domain —
academic advisors often suggest, for example, that advisees talk to students who have
taken the course from a particular professor. Additionally, the case-based explanation
module can be adapted to take into account user preferences, and therefore make more
precise analogies.

User Study We have recently received institutional approval for a large, multi-staged
user study. We informally piloted the system with computer science students at our
university, but this informal test fails to address the real issues surrounding user in-
terfaces. Our study will use students from disciplines including psychology, computer
science, and electrical engineering, and advisors from these disciplines. We will com-
pare the advice generated by our system and its “most convincing” approach to other
systems which use a “most coverage” (with respect to rewards) approach. We will sur-
vey both students and advisors to find what, if any, difference exists between these two
approaches. We will also test differences in framing advice in positive and negative
lights. There is extensive literature about the effects of goal framing on choice and we
hope to leverage this idea to make our recommendations more convincing [19].

By approaching a user study from both the experts’ and users’ viewpoints we will
learn about what makes good advice in this domain and what makes convincing ar-
guments in many more domains. A full treatment of this study, including pilot study,

methodology, instrument development, and data analysis will fill another complete pa-
per. We did not want to present a token user study. Quality evaluation methods must
become the standard for, and not the exception to, systems that interact with non-expert
users such as the one developed here.

6 Conclusion and Future Work

In this work we have presented a system and design which generates natural language
explanations for actions generated by MDPs. This system uses a novel mix of case-
based and model-based techniques to generate highly salient explanations. The system
design abstracts the domain dependent knowledge from the explanation system, allow-
ing it to be ported to other domains with minimal work by the domain expert. The gener-
ated explanations are grounded both psychologically and mathematically for maximum
impact, clarity, and correctness. The system operates in real time and is scalable based
on the amount of domain specific information available.

Automatic planning and scheduling tools generate recommendations that are often
not followed by end users. As computer recommendations integrate deeper into ev-
eryday life it becomes imperative that we, as computer scientists, understand why and
how users implement recommendations generated by our systems. The framework here
starts to bridge the gap between mathematical fundamentals and user expectations.

Our current model recommends one course at a time. We will be expanding the sys-
tem to include multiple actions per time step. This requires a planner that can handle
factored actions, and requires that we adjust the explanation interface. We expect that
explanations will consist of three parts, not necessarily all present in each response. The
first will answer the question, "Why this particular course/atomic action?” The second
will answer, "Why these two/few courses/atomic actions together?” And the third will
look at the entire set. Answers to the first type of query will be very similar to what is de-
scribed here, but will take into account whether the effects are on simultaneous or future
courses. Answers to the second type will build directly on the information generated to
answer the first type. We expect that answers to "Why this set of courses” will depend
on the constraints given on sets of courses/atomic actions, such as ”You are only al-
lowed to take 21 credits per semester, and your transcript indicates that you/people with
records like yours do best with about 15 per semester.”

Our model based module extracts information from the MDP model and a policy
of recommended actions on that model. Finding optimal policies for factored MDPs is
PSPACE-hard [12]. We assumed, in the development of this system, that the optimal
policy is available. Given a heuristic policy, our system will generate consistent expla-
nations, but they will not necessarily be as convincing. We would like to extend our
work and improve the argument interface when only heuristic policies are available.

Acknowledgements This work is partially supported by NSF EAGER grant CCF-
1049360. We would like to thank the members of the UK-AILab, especially Robert
Crawford, Joshua Guerin, Daniel Michler, and Matthew Spradling for their support and
helpful discussions. We are also grateful to the anonymous reviewers who have made
many helpful recommendations for the improvement of this paper.

References

10.

11.
12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

. Aamodt, A., Plaza, E.: Case-based reasoning: Foundational issues, methodological varia-

tions, and system approaches. Al communications 7(1), 39-59 (1994)

. Bellman, R.: Dynamic Programming. Princeton University Press (1957)
. Boutilier, C., Dean, T., Hanks, S.: Decision-theoretic planning: Structural assumptions and

computational leverage. Journal of Artificial Intellgence Research 11, 1-94 (1999)

. Camara, W.J., Echternacht, G.: The SAT I and high school grades: utility in predicting suc-

cess in college. RN-10, College Entrance Examination Board, New York (2000)

. Elizalde, F., Sucar, E., Noguez, J., Reyes, A.: Generating explanations based on Markov de-

cision processes. In: Mexican International Conf. on Artificial Intelligence. pp. 51-62 (2009)

. Frederick, S., Loewenstein, G., O’Donoghue, T.: Time discounting and time preference: A

critical review. Journal of Economic Literature 40, 351-401 (2002)

. Guerin, J.T., Crawford, R., Goldsmith, J.: Constructing dynamic bayes nets using recommen-

dation techniques from collaborative filtering. Tech report, University of Kentucky (2010)

. Hoey, J., St-Aubin, R., Hu, A., Boutilier, C.: SPUDD: Stochastic planning using decision

diagrams. In: Proc. UAL pp. 279-288 (1999)

. Khan, O., Poupart, P., Black, J.: Minimal sufficient explanations for factored Markov deci-

sion processes. In: Proc. ICAPS (2009)

Mathias, K., Williams, D., Cornett, A., Dekhtyar, A., Goldsmith, J.: Factored mdp elicitation
and plan display. In: Proc. ISDN, AAAI (2006)

Moore, B., Parker, R.: Critical Thinking. McGraw-Hill (2008)

Mundhenk, M., Lusena, C., Goldsmith, J., Allender, E.: The complexity of finite-horizon
Markov decision process problems. JACM 47(4), 681-720 (2000)

Murray, K., Haubl, G.: Interactive consumer decision aids. In: Wierenga, B. (ed.) Handbook
of Marketing Decision Models, pp. 55-77. Springer (2008)

Nugent, C., Doyle, D., Cunningham, P.: Gaining insight through case-based explanation. JIIS
32,267-295 (2009)

Puterman, M.: Markov Decision Processes. Wiley (1994)

Renooij, S.: Qualitative Approaches to Quantifying Probabilistic Networks. Ph.D. thesis, In-
stitute for Information and Computing Sciences, Utrecht University, The Netherlands (2001)
Sinha, R., Swearingen, K.: The role of transparency in recommender systems. In: CHI *02
Conference Companion. pp. 830-831 (2002)

Tversky, A., Kahneman, D.: Judgement under uncertainty: Heuristics and biases. Science
185, 1124-1131 (1974)

Tversky, A., Kahneman, D.: Rational choice and the framing of decisions. The Journal of
Business 59(4), 251-278 (1986)

Tversky, A., Kahneman, D.: Advances in prospect theory: Cumulative representation of un-
certainty. Journal of Risk and uncertainty 5(4), 297-323 (1992)

Witteman, C., Renooij, S., Koele, P.: Medicine in words and numbers: A cross-sectional sur-
vey comparing probability assessment scales. BMC Med. Informatics and Decision Making
7(13) (2007)

